6-AMINO-2-BENZOTHIAZOLECARBONITRILE

Collect

BASIC PARAMETERS Find an error

CAS: 7724-12-1
MF:
MW:
Synonyms: 6-AMINO-2-BENZOTHIAZOLECARBONITRILE

REPORT BY

Gaolin Liang

University of Science and Technology of China
follow
Co-reporter: Qingqing Miao, Qing Li, Qingpan Yuan, Lingli Li, Zijuan Hai, Shuang Liu, and Gaolin Liang
pp: 3460
Publication Date(Web):February 17, 2015
DOI: 10.1021/ac504836a
Simultaneous discriminative sensing of biothiols in vitro and in living cells has remained challenging. Herein, we report a new sulfonamide-based self-quenched fluorescent probe 1 for this purpose with high sensitivity and good selectivity. Treatment of 1 with cysteine (Cys), homocysteine (Hcy), or glutathione (GSH) yields aminoluciferin, 2-cyano-6-aminobenzothiazole homocysteine (CBTHcy), or 2-cyano-6-aminobenzothiazole (CBT), turning “on” the fluorescence at wavelengths of 522, 517, or 490 nm, respectively. Kinetic study indicated that 1 reacts with Cys faster than with Hcy or GSH. With these unique properties of 1, we applied 1 for highly sensitive sensing of Cys, Hcy, and GSH among other 19 natural amino acids (AAs) with good selectivity. Confocal fluorescence microscopic imaging of 1-treated HepG2 cells at two channels (522 ± 8 and 490 ± 8 nm), together with quantitative analysis, indicated that the “turn-on” fluorescence was induced by intracellular Cys-dominating condensation and reduction of 1 but not by intracellular GSH-dominating reduction of 1. This suggests that 1 could be applied for discriminative sensing of intracellular Cys from the abundant GSH. Further development of 1 might bring about an efficient tool for probing cellular functions that relate to biothiols.
Co-reporter: Yue Yuan, Jia Zhang, Qinjingwen Cao, Linna An, and Gaolin Liang
pp: 6180
Publication Date(Web):May 19, 2015
DOI: 10.1021/acs.analchem.5b01656
There has been no report on enzyme-controlled disassembly of self-quenched NIR fluorescent nanoparticles turning fluorescence on for specific detection/imaging of the enzyme’s activity in vitro and in vivo. Herein, we reported the rational design of new NIR probe 1 whose fluorescence signal was self-quenched upon reduction-controlled condensation and subsequent assembly of its nanoparticles (i.e., 1-NPs). Then disassembly of 1-NPs by furin turned the fluorescence on. Employing this enzymatic strategy, we successfully applied 1-NPs for NIR detection of furin in vitro and NIR imaging furin activity in living cells. Moreover, we also applied 1-NPs for discriminative NIR imaging of MDA-MB-468 tumors in nude mice. This NIR probe 1 might be further developed for tumor-targeted imaging in routine preclinical studies or even in patients in the future.
Co-reporter: Wei Du, Yue Yuan, Lin Wang, Yusi Cui, Hui Wang, Huiqin Xu, and Gaolin Liang
pp: 2571
Publication Date(Web):November 18, 2015
DOI: 10.1021/acs.bioconjchem.5b00570
Cancer cell-targeted imaging and drug delivery remain a challenge for precise cancer theranostics. MUC1 is a large transmembrane glycoprotein that may potentially serve as a target for cancer theranostics. Herein, using a MUC1-targeting aptamer (APT) as the “warhead”, we rationally designed and constructed a hybrid nanoparticle 1-NPs-QDs-hAPT (Vehicle) that could be applied for MUC1-targeted cell uptake and imaging. By intercalating different Vehicle amounts with the anticancer drug doxorubicin (DOX), we obtained the multifunctional bioconjugate Vehicle-DOX with a maximized drug payload and DOX fluorescence quenching capability. Confocal microscopy cell imaging indicated that Vehicle-DOX could be used to track MUC1-targeted drug release. A cytotoxicity study indicated that Vehicle-DOX could be applied for MUC1-targeted cytotoxicity. We anticipate that our multifunctional bioconjugate Vehicle-DOX could be applied for in vivo tumor-targeted theranostics.

Robert M. Waymouth

Stanford University
follow
Co-reporter: Hsiao-Tieh Hsu, Brian M. Trantow, Robert M. Waymouth, and Paul A. Wender
pp: 376
Publication Date(Web):September 14, 2015
DOI: 10.1021/acs.bioconjchem.5b00469
The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)]+PF6– 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.

Paul A. Wender

Stanford University
follow
Co-reporter: Hsiao-Tieh Hsu, Brian M. Trantow, Robert M. Waymouth, and Paul A. Wender
pp: 376
Publication Date(Web):September 14, 2015
DOI: 10.1021/acs.bioconjchem.5b00469
The development of abiological catalysts that can function in biological systems is an emerging subject of importance with significant ramifications in synthetic chemistry and the life sciences. Herein we report a biocompatible ruthenium complex [Cp(MQA)Ru(C3H5)]+PF6– 2 (Cp = cyclopentadienyl, MQA = 4-methoxyquinoline-2-carboxylate) and a general analytical method for evaluating its performance in real time based on a luciferase reporter system amenable to high throughput screening in cells and by extension to evaluation in luciferase transgenic animals. Precatalyst 2 activates alloc-protected aminoluciferin 4b, a bioluminescence pro-probe, and releases the active luminophore, aminoluciferin (4a), in the presence of luciferase-transfected cells. The formation and enzymatic turnover of 4a, an overall process selected because it emulates pro-drug activation and drug turnover by an intracellular target, is evaluated in real time by photon counting as 4a is converted by intracellular luciferase to oxyaminoluciferin and light. Interestingly, while the catalytic conversion (activation) of 4b to 4a in water produces multiple products, the presence of biological nucleophiles such as thiols prevents byproduct formation and provides almost exclusively luminophore 4a. Our studies show that precatalyst 2 activates 4b extracellularly, exhibits low toxicity at concentrations relevant to catalysis, and is comparably effective in two different cell lines. This proof of concept study shows that precatalyst 2 is a promising lead for bioorthogonal catalytic activation of pro-probes and, by analogy, similarly activatable pro-drugs. More generally, this study provides an analytical method to measure abiological catalytic activation of pro-probes and, by analogy with our earlier studies on pro-Taxol, similarly activatable pro-drugs in real time using a coupled biological catalyst that mediates a bioluminescent readout, providing tools for the study of imaging signal amplification and of targeted therapy.

Jennifer A Prescher

University of California
follow

Yan Zhang

Nanjing University
follow

Deju Ye

Nanjing University
follow

Robin BON

University of Leeds
follow

Stuart WARRINER

University of Leeds
follow

Katherine JOLLEY

University of Leeds
follow

Ho Yu AU-YEUNG

Hongkong University
follow