Co-reporter: Kyung Min Choi; Kyungsu Na; Gabor A. Somorjai;Omar M. Yaghi
pp: 7810-7816
Publication Date(Web):May 29, 2015
DOI: 10.1021/jacs.5b03540
Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO3H, S) and ammonium (−NH3+, N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h.