4,4-Dimethyl-2-vinyloxazol-5(4H)-one

Collect

BASIC PARAMETERS Find an error

CAS: 29513-26-6
MF: C7H9NO2
MW: 139.15186
Synonyms: 4,4-Dimethyl-2-vinyloxazol-5(4H)-one

REPORT BY

Yu-Ming Yang

Chinese Academy of Sciences
follow

Helen E. Blackwell

University of Wisconsin–Madison
follow

Padma Gopalan

University of Wisconsin-Madison
follow
Co-reporter: Samantha K. Schmitt, David J. Trebatoski, John D. Krutty, Angela W. Xie, Benjamin Rollins, William L. Murphy, and Padma Gopalan
pp:
Publication Date(Web):February 2, 2016
DOI: 10.1021/acs.biomac.5b01682
Conjugation of biomolecules for stable presentation is an essential step toward reliable chemically defined platforms for cell culture studies. In this work, we describe the formation of a stable and site-specific amide bond via the coupling of a cysteine terminated peptide at low concentration to an azlactone containing copolymer coating. A copolymer of polyethylene glycol methyl ether methacrylate-ran-vinyl azlactone-ran-glycidyl methacrylate P(PEGMEMA-r-VDM-r-GMA) was used to form a thin coating (20–30 nm) on silicon and polycarbonate substrates. The formation and stability of coating-peptide bonds for peptides containing free thiols and amines were quantified by X-ray photoelectron spectroscopy (XPS) after exposure to cell culture conditions. Peptides containing a thiol as the only nucleophile coupled via a thioester bond; however, the bond was labile under cell culture conditions and almost all the bound peptides were displaced from the surface over a period of 2 days. Coupling with N-terminal primary amine peptides resulted in the formation of an amide bond with low efficiency (<20%). In contrast, peptides containing an N-terminal cysteine, which contain both nucleophiles (free thiol and amine) in close proximity, bound with 67% efficiency under neutral pH, and were stable under the same conditions for 2 weeks. Control studies confirm that the stable amide formation was a result of an intramolecular rearrangement through a N-acyl intermediate that resembles native chemical ligation. Through a combination of XPS and cell culture studies, we show that the cysteine terminated peptides undergo a native chemical ligation process at low peptide concentration in aqueous media, short reaction time, and at room temperature resulting in the stable presentation of peptides beyond 2 weeks for cell culture studies.

David M. Lynn

University of Wisconsin—Madison
follow
Co-reporter: Matthew T. Holden, Matthew C. D. Carter, Cheng-Hsien Wu, Jamison Wolfer, Eric Codner, Michael R. Sussman, David M. Lynn, and Lloyd M. Smith
pp: 11420
Publication Date(Web):October 23, 2015
DOI: 10.1021/acs.analchem.5b02893
The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm2, similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or “millichips”) using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.
Co-reporter: Matthew C. D. Carter and David M. Lynn
pp: 5063
Publication Date(Web):June 20, 2016
DOI: 10.1021/acs.chemmater.6b01897
We report approaches to the design of covalently crosslinked and physically stable surface coatings with chemically labile and dynamic surface features based on the functionalization of azlactone-containing materials with alcohol-, thiol-, and hydrazine-based nucleophiles. Past studies demonstrate that residual azlactone groups in polymer multilayers fabricated by the reactive layer-by-layer assembly of poly(2-vinyl-4,4-dimethylazlactone) and branched poly(ethylenimine) can react with amine-based nucleophiles to impart new surface and bulk properties through the creation of chemically stable amide/amide-type bonds. Here, we demonstrate that the azlactone groups in these covalently crosslinked materials can also be functionalized using less nucleophilic alcohol- or thiol-containing compounds, using an organic catalyst, or converted to reactive acylhydrazine groups by direct treatment with hydrazine. These methods (i) broaden the pool of molecules that can be used for post-fabrication functionalization to include compounds containing alcohol, thiol, or aldehyde groups and (ii) yield surface coatings with chemically labile amide/ester-, amide/thioester-, and amide/imine-type bonds that make possible the design of new dynamic and stimulus-responsive materials (e.g., surfaces that release covalently bound molecules or undergo changes in extreme wetting behaviors in response to specific chemical stimuli). Our results expand the range of functionality that can be installed in, and thus the range of new functions that can be imparted to, azlactone-containing coatings beyond those that can be accessed using primary amine-based nucleophiles. The chemical approaches demonstrated here using model polymer-based reactive multilayer coatings are general and should thus also prove useful for the design of new responsive surfaces based on other types of azlactone-functionalized materials.
Co-reporter: Michael J. Kratochvil, Michael A. Welsh, Uttam Manna, Benjamín J. Ortiz, Helen E. Blackwell, and David M. Lynn
pp: 509
Publication Date(Web):May 24, 2016
DOI: 10.1021/acsinfecdis.6b00065
Surfaces that can both prevent bacterial biofouling and inhibit the expression of virulence phenotypes in surrounding planktonic bacteria are of interest in a broad range of contexts. Here, we report new slippery-liquid infused porous surfaces (SLIPS) that resist bacterial colonization (owing to inherent “slippery” surface character) and also attenuate virulence phenotypes in non-adherent cells by gradually releasing small-molecule quorum sensing inhibitors (QSIs). QSIs active against Pseudomonas aeruginosa can be loaded into SLIPS without loss of their slippery and antifouling properties, and imbedded agents can be released into surrounding media over hours to days depending on the structures of the loaded agent. This controlled-release approach is useful for inhibiting virulence factor production and can also inhibit bacterial biofilm formation on nearby, non-SLIPS-coated surfaces. Finally, we demonstrate that this approach is compatible with the simultaneous release of more than one type of QSI, enabling greater control over virulence and suggesting new opportunities to tune the antifouling properties of these slippery surfaces.Keywords: anti-biofouling; antivirulence; biofilms; controlled release; quorum sensing; slippery surfaces
Co-reporter: Adam H. Broderick, Matthew C. D. Carter, Matthew R. Lockett, Lloyd M. Smith, and David M. Lynn
pp: 351
Publication Date(Web):December 13, 2012
DOI: 10.1021/am302285n
We report a top-down approach to the fabrication of oligonucleotide and protein arrays on surfaces coated with ultrathin, amine-reactive polymer multilayers fabricated by the covalent “layer-by-layer” (LbL) assembly of polyethyleneimine (PEI) and the amine-reactive, azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA). Manual spotting of amine-terminated oligonucleotide probe sequences on planar glass slides coated with PEI/PVDMA multilayers (∼35 nm thick) yielded arrays of immobilized probes that hybridized fluorescently labeled complementary sequences with high signal intensities, high signal-to-noise ratios, and high sequence specificity. Treatment of residual azlactone functionality with the nonfouling small-molecule amine d-glucamine resulted in regions between the features of these arrays that resisted adsorption of protein and permitted hybridization in complex media containing up to 10 mg/mL protein. The residual azlactone groups in these films were also exploited to immobilize proteins on film-coated surfaces and fabricate functional arrays of proteins and enzymes. The ability to deposit PEI/PVDMA multilayers on substrates of arbitrary size, shape, and composition permitted the fabrication of arrays of oligonucleotides on the surfaces of multilayer-coated sheets of poly(ethylene terephthalate) and heat-shrinkable polymer film. Arrays fabricated on these flexible plastic substrates can be bent, cut, resized, and manipulated physically in ways that are difficult using more conventional rigid substrates. This approach could thus contribute to the development of new assay formats and new applications of biomolecule arrays. The methods described here are straightforward to implement, do not require access to specialized equipment, and should also be compatible with automated liquid-handling methods used to fabricate higher-density arrays of oligonucleotides and proteins on more traditional surfaces.Keywords: azlactones; covalent assembly; layer-by-layer; oligonucleotide arrays; polymer multilayers; reactive surfaces;

Mahesh K. Mahanthappa

University of Wisconsin—Madison
follow

Lloyd M. Smith

University of Wisconsin–Madison
follow
Co-reporter: Matthew T. Holden, Matthew C. D. Carter, Cheng-Hsien Wu, Jamison Wolfer, Eric Codner, Michael R. Sussman, David M. Lynn, and Lloyd M. Smith
pp: 11420
Publication Date(Web):October 23, 2015
DOI: 10.1021/acs.analchem.5b02893
The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm2, similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or “millichips”) using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

Matthew I. Gibson

University of Warwick
follow

Brett Paull

Dublin City University
follow

Jinghua Yin

Chinese Academy of Sciences
follow

Shifang Luan

Chinese Academy of Sciences
follow