1H-Cycloundec[d]isoindole-1,11(2H)-dione,15-(acetyloxy)-3,3a,4,5,6,6a,9,10,12,15-decahydro-6,12-dihydroxy-4,10,12-trimethyl-5-methylene-3-(phenylmethyl)-,(3S,3aR,4S,6S,6aR,7E,10S,12R,13E,15R,15aR)-

Collect

BASIC PARAMETERS Find an error

CAS: 22144-77-0
MF: C30H37NO6
MW: 507.61788
Synonyms: 1H-Cycloundec[d]isoindole-1,11(2H)-dione,15-(acetyloxy)-3,3a,4,5,6,6a,9,10,12,15-decahydro-6,12-dihydroxy-4,10,12-trimethyl-5-methylene-3-(phenylmethyl)-,(3S,3aR,4S,6S,6aR,7E,10S,12R,13E,15R,15aR)-

REPORT BY

Jie Zhang

Fudan University
follow

Meidong Lang

East China University of Science and Technology
follow

Yan Zhang

East China University of Science and Technology
follow

Kevan M. Shokat

University of California
follow

Stanley M. Parsons

University of California, Santa Barbara
follow

Steve Granick

University of Illinois
follow

Wendy F. Liu

University of California at Irvine
follow

Ronald T. Raines

University of Wisconsin–Madison
follow
Co-reporter: Tzu-Yuan Chao and Ronald T. Raines
pp:
Publication Date(Web):August 9, 2011
DOI: 10.1021/bi2009079
Pancreatic-type ribonucleases can exert toxic activity by catalyzing the degradation of cellular RNA. Their ability to enter cells is essential for their cytotoxicity. Here, we determine the mechanism by which bovine pancreatic ribonuclease (RNase A) enters human cells. Inhibiting clathrin-dependent endocytosis with dynasore or chlorpromazine decreases RNase A-uptake by ∼70%. Limited colocalization between RNase A and transferrin indicates that RNase A is not routed through recycling endosomes. Instead, vesicular staining of RNase A overlaps substantially with that of nona-arginine and the cationic peptide corresponding to residues 47–57 of the HIV-1 TAT protein. At low concentrations (<5 μM), internalization of RNase A and these cell-penetrating peptides (CPPs) is inhibited by chlorpromazine as well as the macropinocytosis inhibitors cytochalasin D and 5-(N-ethyl-N-isopropyl)amiloride to a similar extent, indicative of common endocytic mechanism. At high concentrations, CPPs adopt a nonendocytic mechanism of cellular entry that is not shared by RNase A. Collectively, these data suggest that RNase A is internalized via a multipathway mechanism that involves both clathrin-coated vesicles and macropinosomes. The parallel between the uptake of RNase A and CPPs validates reference to RNase A as a “cell-penetrating protein”.

Edwin Vedejs

University of Michigan
follow

Barbara A. Baird

Cornell University
follow