Collect

BASIC PARAMETERS Find an error

CAS: 131083-16-4
MF: C18BN2F2
MW: 293.0138
Synonyms:

TOPICS

REPORT BY

Allen J. Bard

The University of Texas at Austin
follow

Peter J. Rossky

University of Texas at Austin
follow

Gregory A. Sotzing

University of Connecticut
follow

Hengwu Chen

Zhejiang University
follow

Anthony Harriman

Université de Strasbourg
follow

Santiago De La Moya

Universidad Complutense de Madrid
follow
Co-reporter: Eduardo Palao, Santiago de la Moya, Antonia R. Agarrabeitia, Ixone Esnal, Jorge Bañuelos, Íñigo López-Arbeloa, and María J. Ortiz
pp: 4364-4367
Publication Date(Web):August 25, 2014
DOI: 10.1021/ol501945v
Selected meso BODIPYs (chemically reactive, difficult to obtain by established procedures, or photophysically or electrochemically attractive) have been obtained by unprecedented selective lateral lithiation of 8-methylBODIPYs. The physical study of the obtained new meso BODIPYs reveals interesting tunable properties related to the activation of intramolecular charge-transfer processes, endorsing the new synthetic methodology as useful for the development of smarter BODIPY dyes for technological applications.
Co-reporter: I. Esnal, G. Duran-Sampedro, A. R. Agarrabeitia, J. Bañuelos, I. García-Moreno, M. A. Macías, E. Peña-Cabrera, I. López-Arbeloa, S. de la Moya and M. J. Ortiz  
pp: 8239-8247
Publication Date(Web):23 Feb 2015
DOI: 10.1039/C5CP00193E
Linking amino and hydroxycoumarins to BODIPYs through the amino or hydroxyl group lets the easy construction of unprecedented photostable coumarin–BODIPY hybrids with broadened and enhanced absorption in the UV spectral region, and outstanding wavelength-tunable laser action within the green-to-red spectral region (∼520–680 nm). These laser dyes allow the generation of a valuable tunable UV (∼260–350 nm) laser source by frequency doubling, which is essential to study accurately the photochemistry of biological molecules under solar irradiation. The tunability is achieved by selecting the substitution pattern of the hybrid. Key factors are the linking heteroatom (nitrogen vs. oxygen), the number of coumarin units joined to the BODIPY framework and the involved linking positions.
Co-reporter: I. Esnal, G. Duran-Sampedro, A. R. Agarrabeitia, J. Bañuelos, I. García-Moreno, M. A. Macías, E. Peña-Cabrera, I. López-Arbeloa, S. de la Moya and M. J. Ortiz
pp: NaN8247-8247
Publication Date(Web):2015/02/23
DOI: 10.1039/C5CP00193E
Linking amino and hydroxycoumarins to BODIPYs through the amino or hydroxyl group lets the easy construction of unprecedented photostable coumarin–BODIPY hybrids with broadened and enhanced absorption in the UV spectral region, and outstanding wavelength-tunable laser action within the green-to-red spectral region (∼520–680 nm). These laser dyes allow the generation of a valuable tunable UV (∼260–350 nm) laser source by frequency doubling, which is essential to study accurately the photochemistry of biological molecules under solar irradiation. The tunability is achieved by selecting the substitution pattern of the hybrid. Key factors are the linking heteroatom (nitrogen vs. oxygen), the number of coumarin units joined to the BODIPY framework and the involved linking positions.

Deying Chen

Harbin Institute of Technology
follow

Nagaiyan Sekar

Department of Dyestuff Technology
follow
Co-reporter: Kishor G. Thorat, Priyadarshani Kamble, Alok K. Ray and Nagaiyan Sekar  
pp: 17221-17236
Publication Date(Web):27 May 2015
DOI: 10.1039/C5CP01741F
Two novel BODIPY (pyrromethene, PM) dyes containing N-ethyl carbazole at the meso position are synthesized and their photophysical properties in different solvents and the photochemical stabilities and laser performances in n-heptane are investigated. The n-heptane solution of the dyes was used as a gain medium in a constructed narrow band dye laser, pumped by a Q-switched (10 Hz) frequency-doubled (532 nm) Nd:YAG laser and the results gave enhanced photo stabilities and similar peak efficiencies of the synthesized dyes as compared to parent dye PM567. When substituted at the meso position with N-alkyl carbazole, photostability is found to be increased in comparison to PM567, and also when substituted at 2- and 6-positions with a benzyl group instead of an ethyl group along with N-ethyl carbazole at the meso position, the photo stability is further increased in n-heptane. A comprehensive study on structural, photophysical and electronic properties of dyes by means of DFT and TD-DFT in the solvents of various polarities has revealed remarkable characteristics of the BODIPY chromophore.
Co-reporter: Kishor G. Thorat, Priyadarshani Kamble, Alok K. Ray and Nagaiyan Sekar
pp: NaN17236-17236
Publication Date(Web):2015/05/27
DOI: 10.1039/C5CP01741F
Two novel BODIPY (pyrromethene, PM) dyes containing N-ethyl carbazole at the meso position are synthesized and their photophysical properties in different solvents and the photochemical stabilities and laser performances in n-heptane are investigated. The n-heptane solution of the dyes was used as a gain medium in a constructed narrow band dye laser, pumped by a Q-switched (10 Hz) frequency-doubled (532 nm) Nd:YAG laser and the results gave enhanced photo stabilities and similar peak efficiencies of the synthesized dyes as compared to parent dye PM567. When substituted at the meso position with N-alkyl carbazole, photostability is found to be increased in comparison to PM567, and also when substituted at 2- and 6-positions with a benzyl group instead of an ethyl group along with N-ethyl carbazole at the meso position, the photo stability is further increased in n-heptane. A comprehensive study on structural, photophysical and electronic properties of dyes by means of DFT and TD-DFT in the solvents of various polarities has revealed remarkable characteristics of the BODIPY chromophore.