Collect

BASIC PARAMETERS Find an error

CAS: 628337-00-8
MF: C20H24NBr
MW: 358.31526
Synonyms:

REPORT BY

Ran Lu

Jilin University
follow
Co-reporter: Dr. Pengchong Xue;Jiabao Sun;Boqi Yao;Peng Gong;Zhenqi Zhang;Chong Qian;Dr. Yuan Zhang; Ran Lu
pp: 4712-4720
Publication Date(Web):
DOI: 10.1002/chem.201405074

Abstract

Two L-phenylalanine derivatives with 5,8-bis(2-(carbazol-3-yl)vinyl)quinoxaline (PCQ) and 5,8-bis[2-(carbazol-3-yl)]-2,3-dimethylquinoxaline (DCQ) as fluorophores were synthesized, and their photophysical properties were measured and compared. The two compounds were found to gelate some organic solvents and self-assemble into 1D nanofibers in gels. The wet gel of PCQ emitted a weak orange fluorescence, but the DCQ gel had a strong green one. This result can be due to the presence of two methyl groups and the nonplanar conformation of fluorophore in DCQ. The gel film of DCQ also showed significantly stronger fluorescence than that of PCQ. Thus, the wet gel and xerogel film of DCQ were selected to study their sensing properties to acids. The yellow wet gel of DCQ transformed into a brown sol upon the addition of 0.2 equiv trifluoroacetic acid (TFA), accompanied by emission quenching. The xerogel film of DCQ rapidly responded to volatile acids, such as TFA, HCl, and HOAc. The fluorescence of the xerogel film was gradually quenched with increased concentration of volatile acid vapors. The fibrous film exhibited low detection limits for volatile acid. The detection limits of the thin films for TFA, HCl, and HOAc reached 43, 122, and 950 ppb, respectively.

Pengchong Xue

Jilin University
follow
Co-reporter: Dr. Pengchong Xue;Jiabao Sun;Boqi Yao;Peng Gong;Zhenqi Zhang;Chong Qian;Dr. Yuan Zhang; Ran Lu
pp: 4712-4720
Publication Date(Web):
DOI: 10.1002/chem.201405074

Abstract

Two L-phenylalanine derivatives with 5,8-bis(2-(carbazol-3-yl)vinyl)quinoxaline (PCQ) and 5,8-bis[2-(carbazol-3-yl)]-2,3-dimethylquinoxaline (DCQ) as fluorophores were synthesized, and their photophysical properties were measured and compared. The two compounds were found to gelate some organic solvents and self-assemble into 1D nanofibers in gels. The wet gel of PCQ emitted a weak orange fluorescence, but the DCQ gel had a strong green one. This result can be due to the presence of two methyl groups and the nonplanar conformation of fluorophore in DCQ. The gel film of DCQ also showed significantly stronger fluorescence than that of PCQ. Thus, the wet gel and xerogel film of DCQ were selected to study their sensing properties to acids. The yellow wet gel of DCQ transformed into a brown sol upon the addition of 0.2 equiv trifluoroacetic acid (TFA), accompanied by emission quenching. The xerogel film of DCQ rapidly responded to volatile acids, such as TFA, HCl, and HOAc. The fluorescence of the xerogel film was gradually quenched with increased concentration of volatile acid vapors. The fibrous film exhibited low detection limits for volatile acid. The detection limits of the thin films for TFA, HCl, and HOAc reached 43, 122, and 950 ppb, respectively.

Chengyun Wang

East China University of Science and Technology
follow

Yunxiang Lu

East China University of Science and Technology
follow

Peng Chen

Jilin University
follow

Xuehong Lu

Nanyang Technological University
follow

Bo Wang

Wuhan University
follow