We present a simple hybrid white organic light-emitting diodes (WOLED) consisting of only two layers, i.e., a hole-transporting layer and an emitting layer. The emitting layer is formed by simply co-doping a green phosphor and a red phosphor in bis[2-(2-hydroxyphenyl)-pyridine]beryllium (Bepp2), which acts as the blue emitter, electron-transport material, and high triplet energy host for the phosphors, i.e., a multifunctional chromophore. This simple device exhibits a maximum power and quantum efficiency of 46.8 lm W−1 and 16.5%, respectively, with a good CRI up to 90. The versatile experimental techniques are performed to gain a deep understanding of the emission mechanism. We believe that this simple design concept can provide a new avenue for achieving ultrahigh performance WOLEDs for lighting application.Graphical abstractAn ultra-simple hybrid WOLED with high efficiency (46.8 lm W-1 and 16.5%) and CRI (90) is reported. This is one of the best hybrid WOLEDs’ stories so far considering the comprehensive properties. Versatile experimental techniques are performed to gain a deep understanding of the emission mechanism. We believe that this simple design concept can provide a new avenue for achieving ultrahigh-performance hybrid WOLEDs for lighting application.

Highlights► Highly efficient hybrid white organic light-emitting diode was proposed. ► The simple device consists of a hole-transporting layer and an emitting layer. ► The maximum power efficiency of 46.8 lm W−1 with CRI up to 90 was achieved. ► This concept offers a low-cost fabrication process for hybrid white device.