Thermally conductive and electromagnetic interference shielding composites comprising low content of Ag-plating carbon fiber (APCF) were fabricated as electronic packing materials. APCF as conductive filler consisting of carbon fiber (CF) employed as the structural component to reinforce the mechanical strength, and Ag enhancing electrical conductivity, was prepared by advanced electroless Ag-plating processing on CF surfaces. Ag coating had a thickness of 450 nm without oxide phase detected. The incorporation of 4.5 wt % APCF into epoxy (EP) substrate yielded thermal conductivity of 2.33 W/m·K, which is approximately 2.6 times higher than CF–EP composite at the same loading. The APCF–EP composite performed electromagnetic shielding effectiveness of 38–35 dB at frequency ranging from 8.2 to 12.4 GHz in the X band, and electromagnetic reflection was the dominant shielding mechanism. At loading content of APCF up to 7 wt %, thermal conductivity of APCF–EP composites increased to 2.49 W/m·K. Volume resistivity and surface resistivity decreased to 9.5 × 103 Ω·cm and 6.2 × 102 Ω, respectively, which approached a metal. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42306.
In this study, multiwall carbon nanotubes (MWNTs) functionalized by m-xylylenediamine is used as thermal conductive fillers to improve their dispersibility in epoxy resin and the thermal conductivity of the MWNTs/bisphenol-A glycidol ether epoxy resin composites. Functionalization with amine groups of MWNTs is achieved after such steps as carboxylation, acylation and amidation. The thermal conductivity, impact strength, flexural strength, and fracture surfaces of MWNTs/epoxy composites are investigated with different MWNTs. The results show that m-xylylenediamine is successfully grafted onto the surface of the MWNTs and the mass fraction of the organic molecules grafted onto MWNTs is about 20 wt %. The thermal conductivity of MWNTs/epoxy composites is further enhanced to 1.236 W/mK with 2 wt % m-MWNTs. When the content of m-MWNTs is 1.5 wt %, the impact strength and flexural strength of the composites are 25.85 KJ/m2, 128.1 MPa, respectively. Scanning electron microscope (SEM) results show that the fracture pattern of composites is changed from brittle fracture to ductile fracture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41255.