Co-reporter:Julia M. Fehr;Catherine G. McKenas;Carrie L. Donley;Matthew R. Lockett
Langmuir October 18, 2016 Volume 32(Issue 41) pp:10529-10536
Publication Date(Web):2017-2-22
DOI:10.1021/acs.langmuir.6b02961
Amorphous carbon (aC) films are chemically stable under ambient conditions or when interfaced with aqueous solutions, making them a promising material for preparing biosensors and chemically modified electrodes. There are a number of wet chemical methods capable of tailoring the reactivity and wettability of aC films, but few of these chemistries are compatible with photopatterning. Here, we introduce a method to install thiol groups directly onto the surface of aC films. These terminal thiols are compatible with thiol–ene click reactions, which allowed us to rapidly functionalize and pattern the surface of the aC films. We thoroughly characterized the aC films and confirmed the installation of surface-bound thiols does not significantly oxidize the surface or change its topography. We also determined the conditions needed to selectively attach alkene-containing molecules to these films and show the reaction is proceeding through a thiol-mediated reaction. Lastly, we demonstrate the utility of our approach by photopatterning the aC films and preparing ferrocene-modified aC electrodes. The chemistry described here provides a rapid means of fabricating sensors and preparing photoaddressable arrays of (bio)molecules on stable carbon interfaces.
Co-reporter:Rachael M. Kenney;C. Chad Lloyd;Nathan A. Whitman;Matthew R. Lockett
Chemical Communications 2017 vol. 53(Issue 53) pp:7194-7210
Publication Date(Web):2017/06/29
DOI:10.1039/C7CC02357J
Cellular invasion is the gateway to metastasis, which is the leading cause of cancer-related deaths. Invasion is driven by a number of chemical and mechanical stresses that arise in the tumor microenvironment. In vitro assays are needed for the systematic study of cancer progress. To be truly predictive, these assays must generate tissue-like environments that can be experimentally controlled and manipulated. While two-dimensional (2D) monolayer cultures are easily assembled and evaluated, they lack the extracellular components needed to assess invasion. Three-dimensional (3D) cultures are better suited for invasion studies because they generate cellular phenotypes that are more representative of those found in vivo. This feature article provides an overview of four invasion platforms. We focus on paper-based cultures, an emerging 3D culture platform capable of generating tissue-like structures and quantifying cellular invasion. Paper-based cultures are as easily assembled and analyzed as monolayers, but provide an experimentally powerful platform capable of supporting: co-cultures and representative extracellular environments; experimentally controlled gradients; readouts capable of quantifying, discerning, and separating cells based on their invasiveness. With a series of examples we highlight the potential of paper-based cultures, and discuss how they stack up against other invasion platforms.
Co-reporter:Matthew W. Boyce;Gabriel J. LaBonia;Amanda B. Hummon;Matthew R. Lockett
Analyst (1876-Present) 2017 vol. 142(Issue 15) pp:2819-2827
Publication Date(Web):2017/07/24
DOI:10.1039/C7AN00806F
In vitro models for screening new cancer chemotherapeutics often rely on two-dimensional cultures to predict therapeutic potential. Unfortunately, the predictive power of these models is limited, as they fail to recapitulate the complex three-dimensional environments in tumors that promote a chemoresistant phenotype. In this study, we describe the preparation and characterization of paper-based cultures (PBCs) engineered to assess chemotherapeutic effectiveness in three dimensional, diffusion-limited environments. Similar environments are found in poorly vascularized tumors. Monotonic gradients develop across these cultures, which are assembled by stacking cell-laden paper scaffolds to yield thick tissue-like structures, and provide distinct chemical environments for each scaffold. After prolonged incubation, the scaffolds can simply be peeled apart and analyzed. Through fluorescence imaging, we determined that viable and proliferative cell populations were most abundant in scaffolds close to the nutrient-rich medium. By adjusting the cell density, we modulated the spatiotemporal evolution of oxygen gradients across the cultures and correlated these environmental changes with cellular sensitivity to SN-38 exposure. From these results, we showed that differences in the oxygen gradients produced cellular populations with significantly different chemosensitivities. Through this work, we highlight PBCs ability to serve as an analytical model capable of determining chemotherapeutic effectiveness under a range of chemical environments.
Co-reporter:Rachael M. Kenney, Matthew W. Boyce, Andrew S. Truong, C. Robert Bagnell and Matthew R. Lockett
Analyst 2016 vol. 141(Issue 2) pp:661-668
Publication Date(Web):09 Nov 2015
DOI:10.1039/C5AN01787D
Cellular migration is the movement of cells, cultured as a monolayer; cellular invasion is similar to migration, but requires the cells to move through a three-dimensional material such as basement membrane extract or a synthetic hydrogel. Migration assays, such as the transwell assay, are widely used to study cellular movement because they are amenable to high-throughput screens with minimal experimental setup. These assays offer limited information about cellular responses to gradients in vivo because they oversimplify the threedimensional (3D) environment of a tissue. There are a number of invasion assays that support 3D cultures, some of which provide experimental control over the spatial and temporal gradients imparted on the culture. These assays, in their current form, are difficult to setup and maintain, and often require specialized laboratory equipment or engineering expertise. Here we describe a paper-based invasion assay in which cellular movement can be monitored in real-time with fluorescence microscopy. These assays are easily prepared and utilize materials commonly found in any laboratory: a single sheet of paper. These sheets are wax patterned to contain channels in which cells suspended in a hydrogel are seeded and cultured. Cell-containing sheets of paper are placed in a custom-built holder that allows gradients to form along the length of the channels. In this work, we compare the invasion of cells cultured in the presence and absence of an oxygen gradient. Our result support previous findings that oxygen is a chemoattractant, and selectively directs cellular movement in a 3D culture environment.
Co-reporter:Andrew S. Truong and Matthew R. Lockett
Analyst 2016 vol. 141(Issue 12) pp:3874-3882
Publication Date(Web):26 Apr 2016
DOI:10.1039/C6AN00630B
Low oxygen tension, or hypoxia, is a common occurrence in solid tumors. Hypoxia is a master regulator of cellular phenotype, and is associated with increased tumor invasion and aggressiveness as well as adverse patient prognosis. Oxygen has recently been linked with the selective movement of different cancer cell types in three-dimensional invasion assays utilizing paper-based scaffolds. It has remained unclear, however, if cells in these paper-based invasion assays are experiencing hypoxia. In this manuscript, we adapted cell-based methods to measure oxygen tension in our 3D invasion assays: the adduction of pimonidazole to free thiols in the cell, indicative of a reducing environment; the localization of hypoxia inducible factors to the nucleus; and the expression of hypoxia-regulated gene products. We utilized each method to compare the oxygen tension in different locations of the paper-based invasion stacks and found an oxygen gradient is indeed forming. Specifically, we found that the extent of pimonidazole binding, as well as the levels and activities of nucleus-localized HIF-α proteins, increase as the distance between the cells and the source of fresh medium increases. These complementary cell-based readouts not only confirm the selective invasion we observe is due to an oxygen gradient, they also show the gradient is temporal in nature and evolves with increasing culture period.
Co-reporter:Andrew S. Truong, Christian A. Lochbaum, Matthew W. Boyce, and Matthew R. Lockett
Analytical Chemistry 2015 Volume 87(Issue 22) pp:11263
Publication Date(Web):October 27, 2015
DOI:10.1021/acs.analchem.5b02362
Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.
Co-reporter:Rachael M. Kenney, C. Chad Lloyd, Nathan A. Whitman and Matthew R. Lockett
Chemical Communications 2017 - vol. 53(Issue 53) pp:NaN7210-7210
Publication Date(Web):2017/06/09
DOI:10.1039/C7CC02357J
Cellular invasion is the gateway to metastasis, which is the leading cause of cancer-related deaths. Invasion is driven by a number of chemical and mechanical stresses that arise in the tumor microenvironment. In vitro assays are needed for the systematic study of cancer progress. To be truly predictive, these assays must generate tissue-like environments that can be experimentally controlled and manipulated. While two-dimensional (2D) monolayer cultures are easily assembled and evaluated, they lack the extracellular components needed to assess invasion. Three-dimensional (3D) cultures are better suited for invasion studies because they generate cellular phenotypes that are more representative of those found in vivo. This feature article provides an overview of four invasion platforms. We focus on paper-based cultures, an emerging 3D culture platform capable of generating tissue-like structures and quantifying cellular invasion. Paper-based cultures are as easily assembled and analyzed as monolayers, but provide an experimentally powerful platform capable of supporting: co-cultures and representative extracellular environments; experimentally controlled gradients; readouts capable of quantifying, discerning, and separating cells based on their invasiveness. With a series of examples we highlight the potential of paper-based cultures, and discuss how they stack up against other invasion platforms.