Co-reporter:Ruidong Chen, Qingbo Zhang, Bin Tan, Liujuan Zheng, Huixian Li, Yiguang Zhu, and Changsheng Zhang
Organic Letters October 20, 2017 Volume 19(Issue 20) pp:5697-5697
Publication Date(Web):October 11, 2017
DOI:10.1021/acs.orglett.7b02878
A 92 kb silent hybrid polyketide and nonribosomal peptide gene cluster in marine-derived Streptomyces pactum SCSIO 02999 was activated by genetically manipulating the regulatory genes, including the knockout of two negative regulators (totR5 and totR3) and overexpression of a positive regulator totR1, to direct the production of the known totopotensamides (TPMs) A (1) and B (3) and a novel sulfonate-containing analogue TPM C (2). Inactivation of totG led to accumulation of TPM B (3) lacking the glycosyl moiety, which indicated TotG as a dedicated glycosyltransferase in the biosynthesis of 1 and 2.
Co-reporter:Qingbo Zhang;Huixian Li;Lu Yu;Yu Sun;Yiguang Zhu;Hanning Zhu;Liping Zhang;Shu-Ming Li;Yuemao Shen;Changlin Tian;Ang Li;Hung-wen Liu
Chemical Science (2010-Present) 2017 vol. 8(Issue 7) pp:5067-5077
Publication Date(Web):2017/06/26
DOI:10.1039/C7SC01182B
Flavoenzymes are ubiquitous in biological systems and catalyze a diverse range of chemical transformations. The flavoenzyme XiaK from the biosynthetic pathway of the indolosesquiterpene xiamycin A is demonstrated to mediate the in vivo biotransformation of xiamycin A into multiple products, including a chlorinated adduct as well as dimers characterized by C–N and N–N linkages that are hypothesized to form via radical-based mechanisms. Isolation and characterization of XiaK in vitro shows that it acts as a flavin-dependent N-hydroxylase that catalyzes the hydroxylation of xiamycin A at the carbazole nitrogen to form N-hydroxyxiamycin, a product which was overlooked in earlier in vivo experiments because its chemical and chromatographic properties are similar to those of oxiamycin. N-Hydroxyxiamycin is shown to be unstable under aerobic conditions, and characterization by electron paramagnetic resonance spectroscopy demonstrates formation of an N-hydroxycarbazole radical adduct. This radical species is proposed to serve as a key intermediate leading to the formation of the multiple xiamycin A adducts. This study suggests that non-enzyme catalyzed reactions may play a greater role in the biosynthesis of natural products than has been previously recognized.
Co-reporter:Yi Xiao ; Sumei Li ; Siwen Niu ; Liang Ma ; Guangtao Zhang ; Haibo Zhang ; Gaiyun Zhang ; Jianhua Ju
Journal of the American Chemical Society 2010 Volume 133(Issue 4) pp:1092-1105
Publication Date(Web):December 27, 2010
DOI:10.1021/ja109445q
The RNA polymerase inhibitor tiacumicin B is currently undergoing phase III clinical trial for treatment of Clostridium difficile associated diarrhea with great promise. To understand the biosynthetic logic and to lay a foundation for generating structural analogues via pathway engineering, the tiacumicin B biosynthetic gene cluster was identified and characterized from the producer Dactylosporangium aurantiacum subsp. hamdenensis NRRL 18085. Sequence analysis of a 110 633 bp DNA region revealed the presence of 50 open reading frames (orfs). Functional investigations of 11 orfs by in vivo inactivation experiments, preliminarily outlined the boundaries of the tia-gene cluster and suggested that 31 orfs were putatively involved in tiacumicin B biosynthesis. Functions of a halogenase (TiaM), two glycosyltransferases (TiaG1 and TiaG2), a sugar C-methyltransferase (TiaS2), an acyltransferase (TiaS6), and two cytochrome P450s (TiaP1 and TiaP2) were elucidated by isolation and structural characterization of the metabolites from the corresponding gene-inactivation mutants. Accumulation of 18 tiacumicin B analogues from 7 mutants not only provided experimental evidence to confirm the proposed functions of individual biosynthetic enzymes, but also set an example of accessing microbial natural product diversity via genetic approach. More importantly, biochemical characterization of the FAD-dependent halogenase TiaM reveals a sequentially acting dihalogenation step tailoring tiacumicin B biosynthesis.
Co-reporter:Qingbo Zhang, Huixian Li, Lu Yu, Yu Sun, Yiguang Zhu, Hanning Zhu, Liping Zhang, Shu-Ming Li, Yuemao Shen, Changlin Tian, Ang Li, Hung-wen Liu and Changsheng Zhang
Chemical Science (2010-Present) 2017 - vol. 8(Issue 7) pp:NaN5077-5077
Publication Date(Web):2017/05/04
DOI:10.1039/C7SC01182B
Flavoenzymes are ubiquitous in biological systems and catalyze a diverse range of chemical transformations. The flavoenzyme XiaK from the biosynthetic pathway of the indolosesquiterpene xiamycin A is demonstrated to mediate the in vivo biotransformation of xiamycin A into multiple products, including a chlorinated adduct as well as dimers characterized by C–N and N–N linkages that are hypothesized to form via radical-based mechanisms. Isolation and characterization of XiaK in vitro shows that it acts as a flavin-dependent N-hydroxylase that catalyzes the hydroxylation of xiamycin A at the carbazole nitrogen to form N-hydroxyxiamycin, a product which was overlooked in earlier in vivo experiments because its chemical and chromatographic properties are similar to those of oxiamycin. N-Hydroxyxiamycin is shown to be unstable under aerobic conditions, and characterization by electron paramagnetic resonance spectroscopy demonstrates formation of an N-hydroxycarbazole radical adduct. This radical species is proposed to serve as a key intermediate leading to the formation of the multiple xiamycin A adducts. This study suggests that non-enzyme catalyzed reactions may play a greater role in the biosynthesis of natural products than has been previously recognized.