PVA films were prepared through aqueous solution method, and boric acid (BA) as well as graphene oxide (GO) was added to improve the mechanical and thermal properties. It was found that 5 wt % BA could increase the tensile strength threefold (from 23.3 to 67.7 MPa), and the incorporation of 0.2 wt % GO would provide additional percentage growth of 30% (from 67.7 to 88.5 MPa). Moreover, an enhancement of thermal stability of PVA film was found when BA or GO filler was added. The reinforcement mechanisms of both BA and GO were investigated, and a competitive phenomenon that the addition of BA would influence the reinforcement effect of GO sheets was found. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42000.
Graphene oxide (GO) was well dispersed in poly(vinyl alcohol) (PVA) diluted aqueous solution, and then the mixture was electrospun into GO/PVA composite nanofibers. Electron microscopy and Raman spectroscopy on the as-prepared and calcined samples confirm the uniform distribution of GO sheets in the nanofibers. The thermal and mechanical properties of the nanofibers vary considerably with different GO filler contents. The decomposition temperatures of the GO/PVA composite nanofiber dropped by 38–50°C compared with pure PVA. A very small loading of 0.02 wt % GO increases the tensile strength of the nanofibers by 42 times. A porous 3D structure was realized by postcalcining nanofibers in H2. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013