Co-reporter:Cong Zhang;Xifeng Wang;Weican Zhang;Yue Zhao
Applied Microbiology and Biotechnology 2017 Volume 101( Issue 5) pp:1919-1926
Publication Date(Web):2017 March
DOI:10.1007/s00253-016-7927-4
Cytophaga hutchinsonii is a gram-negative bacterium that can efficiently degrade crystalline cellulose by a novel strategy without cell-free cellulases or cellulosomes. Genomic analysis implied that C. hutchinsonii had endoglucanases and β-glucosidases but no exoglucanases which could processively digest cellulose and produce cellobiose. In this study, BglA was functionally expressed in Escherichia coli and found to be a β-glucosidase with wide substrate specificity. It can hydrolyze pNPG, pNPC, cellobiose, and cellodextrins. Moreover, unlike most β-glucosidases whose activity greatly decreases with increasing length of the substrate chains, BglA has similar activity on cellobiose and larger cellodextrins. The Km values of BglA on cellobiose, cellotriose, and cellotetraose were calculated to be 4.8 × 10−2, 5.6 × 10−2, and 5.3 × 10−2 mol/l, respectively. These properties give BglA a great advantage to cooperate with endoglucanases in C. hutchinsonii in cellulose degradation. We proposed that C. hutchinsonii could utilize a simple cellulase system which consists of endoglucanases and β-glucosidases to completely digest amorphous cellulose into glucose. Moreover, BglA was also found to be highly tolerant to glucose as it retained 40 % activity when the concentration of glucose was 100 times higher than that of the substrate, showing potential application in the bioenergy industry.
Co-reporter:Cong Zhang;Ying Wang;Zhe Li;Xiangru Zhou
Applied Microbiology and Biotechnology 2014 Volume 98( Issue 15) pp:6679-6687
Publication Date(Web):2014 August
DOI:10.1007/s00253-014-5640-8
Cytophaga hutchinsonii is a Gram-negative gliding bacterium which can efficiently degrade crystalline cellulose by an unknown strategy. Genomic analysis suggests the C. hutchinsonii genome lacks homologs to an obvious exoglucanase that previously seemed essential for cellulose degradation. One of the putative endoglucanases, CHU_2103, was successfully expressed in Escherichia coli JM109 and identified as a processive endoglucanase with transglycosylation activity. It could hydrolyze carboxymethyl cellulose (CMC) into cellodextrins and rapidly decrease the viscosity of CMC. When regenerated amorphous cellulose (RAC) was degraded by CHU_2103, the ratio of the soluble to insoluble reducing sugars was 3.72 after 3 h with cellobiose and cellotriose as the main products, indicating that CHU_2103 was a processive endoglucanase. CHU_2103 could degrade cellodextrins of degree of polymerization ≥3. It hydrolyzed p-nitrophenyl β-d-cellodextrins by cutting glucose or cellobiose from the non-reducing end. Meanwhile, some larger-molecular-weight cellodextrins could be detected, indicating it also had transglycosylation activity. Without carbohydrate-binding module (CBM), CHU_2103 could bind to crystalline cellulose and acted processively on it. Site-directed mutation of CHU_2103 demonstrated that the conserved aromatic amino acid W197 in the catalytic domain was essential not only for its processive activity, but also its cellulose binding ability.
Co-reporter:Xiaofei Ji;Yuanxi Xu;Cong Zhang;Ning Chen
Applied Microbiology and Biotechnology 2012 Volume 96( Issue 1) pp:161-170
Publication Date(Web):2012 October
DOI:10.1007/s00253-012-4051-y
Cytophaga hutchinsonii is a Gram-negative gliding bacterium, which can rapidly degrade crystalline cellulose via a novel strategy without any recognizable processive cellulases. Its mechanism of cellulose binding and degradation is still a mystery. In this study, the mutagenesis of C. hutchinsonii with the mariner-based transposon HimarEm3 and gene complementation with the oriC-based plasmid carrying the antibiotic resistance gene cfxA or tetQ were reported for the first time to provide valuable tools for mutagenesis and genetic manipulation of the bacterium. Mutant A-4 with a transposon mutation in gene CHU_0134, which encodes a putative thiol-disulfide isomerase exhibits defects in cell motility and cellulose degradation. The cellulose binding ability of A-4 was only half of that of the wild-type strain, while the endo-cellulase activity of the cell-free supernatants and on the intact cell surface of A-4 decreased by 40 %. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of proteins binding to cellulose in the outer membrane showed that most of them were significantly decreased or disappeared in A-4 including some Gld proteins and hypothetical proteins, indicating that these proteins might play an important role in cell motility and cellulose binding and degradation by the bacterium.
Co-reporter:Weican Zhang, Xuhui Dai, Yue Zhao, Xuemei Lu and Peiji Gao
Langmuir 2009 Volume 25(Issue 4) pp:2363-2368
Publication Date(Web):2017-2-22
DOI:10.1021/la803240x
In the pH 2.6 and 5.2 systems, soybean peroxidase (SBP) (isoelectric point, pI 3.9) has positive and negative charge, respectively. In order to acquire detailed knowledge on the role played by electrostatics in the denaturation of proteins, a comparison of anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant nonaethylene glycol monododecyl ether [C12H25O(CH2CH2O)9H] (AEO9), and cationic surfactant cetyltrimethylammonium bromide (CTAB) for the influences on the activity and structure of soybean peroxidase (SBP) was carried out by measuring the activity, far-UV circular dichrosm, fluorescence, and electronic absorption spectra of SBP in the pH 2.6 and 5.2 systems at 30 °C. In the pH 2.6 systems, the interaction of SDS with SBP results in an increase in the fluorescence intensity with a red shift of the emission maximum of the tryptophan fluorescence and a blue shift of the Soret band. In the meantime, the α-helix of SBP is unfolded and the activity of SBP is lost irreversibly. In pH 5.2 systems, the fluorescence spectra features of SBP are similar to those in pH 2.6 systems with increasing SDS concentration, but a red shift of Soret band as well as an alteration of the tertiary structure of SBP occurs, and the lost activity is recoverable. The electrostatic interactions between SBP and SDS play an important role in the denaturation of SBP. The effects of AEO9 and CTAB in pH 2.6 and 5.2 systems on the activity and spectral features of SBP are similar to that of SDS in pH 5.2 systems, but AEO9 is prone to unfold the β-sheet of SBP in pH 2.6 systems. The electrostatic interactions of CTAB with SBP are not the primary elements for denaturation of SBP, which distinctly differ from those of SDS. These results can be useful with respect to wide applications of the surfactants in the separation and purification of proteins.