Salvia miltiorrhiza Bge. var. alba C.Y. Wu and H.W. Li has wide prospects in clinical practice. A useful comprehensive method was developed for the quality evaluation of S. miltiorrhiza var. alba by three quantitative parameters: high-performance liquid chromatography fingerprint, ten-component contents, and antioxidant activity. The established method was validated for linearity, precision, repeatability, stability, and recovery. Principal components analysis and hierarchical clustering analysis were both used to evaluate the quality of the samples from different origins. The results showed that there were category discrepancies in quality of S. miltiorrhiza var. alba samples according to the three quantitative parameters. Multivariate linear regression was adopted to explore the relationship between components and antioxidant activity. Three constituents, namely, danshensu, rosmarinic acid, and salvianolic acid B, significantly correlated with antioxidant activity, and were successfully elucidated by the optimized multivariate linear regression model. The combined use of high-performance liquid chromatography fingerprint analysis, simultaneous multicomponent quantitative analysis, and antioxidant activity for the quality evaluation of S. miltiorrhiza var. alba is a reliable, comprehensive, and promising approach, which might provide a valuable reference for other herbal products in general to improve their quality control.
Introduction – Radix Astragali, one of most widely used and important traditional Chinese medicines, is cultivated in different geographical regions. Because of varying growing conditions, the qualities of Radix Astragali vary, which can give rise to differences in clinical therapy. Detecting adulteration is a routine requirement in pharmaceutical practice.
Objective – To develop a simple and accurate approach to discriminate the geographical origin and potential adulteration of Radix Astragali, derived from the root of Astragalus membranaceus (Fischer) Bunge var. mongholicus (Bunge) Hsiao, using Fourier transform infrared (FT-IR) spectroscopy and chemometric methods.
Methodology – To obtain characteristic IR spectra for accurate discrimination, a one-solvent extraction method was utilised following a novel evaluation method for selecting appropriate solvents. Samples of Radix Astragali from different geographical origins were discriminated using FT-IR spectroscopy and discriminant partial least squares (DPLS) methods. FT-IR spectroscopy combined with Mahalanobis distance was employed to detect adulteration of Radix Astragali.
Results – In comparison with other solvents, butanone was more effective at extracting samples. Radix Astragali samples were accurately assigned to their corresponding geographical origins by using FT-IR spectroscopy and DPLS method. Most adulterated samples were detected accurately by application of FT-IR spectroscopy combined with Mahalanobis distance.
Conclusion – FT-IR spectroscopy combined with chemometric method was developed and demonstrated to be a useful tool to discriminate geographical origin and adulteration of Radix Astragali. Copyright © 2010 John Wiley & Sons, Ltd.