Co-reporter:Jian Li, Lingfei Ji, Yan Hu, Yong Bao
Ceramics International 2016 Volume 42(Issue 3) pp:4377-4385
Publication Date(Web):15 February 2016
DOI:10.1016/j.ceramint.2015.11.118
High quality micro-sized steps and blind hole structures without microcracks, chips or spatter deposition were machined on yttria-tetragonal zirconia polycrystal (Y-TZP, 3 mol% yttria) by nanosecond laser (wavelength=532 nm, pulse width ~6 ns). The diameter of blind hole is 500 μm and each step is 500±10 μm wide and 100±5 μm deep. The 1.35 mm3/min removal rate and the smooth machined surface with Ra=2.824 μm roughness depicting the high precise and efficient processing were achieved. The ablation characteristics of nanosecond laser process of Y-TZP ceramic were also studied. Based on the study, a reasonable design of the processing path for micromachining of a finer embedded step with 24±2 μm width (smaller than the 60 μm focused spot size) around the inner-wall of a 2×2 mm2 cavity was developed. These results and discussion offer new possibilities in the manufacturing of bio-ceramic products by nanosecond laser with high processing quality and efficient.
Co-reporter:Yinzhou Yan, Lingfei Ji, Yong Bao, Yijian Jiang
Journal of Materials Processing Technology 2012 Volume 212(Issue 6) pp:1257-1270
Publication Date(Web):June 2012
DOI:10.1016/j.jmatprotec.2012.01.010
A major challenge in laser percussion drilling of thick-section ceramics is to obtain a low taper and low spatter deposition hole leading to high quality post-processing. In order to achieve the fine hole drilling, it is important to understand the mechanism of laser percussion drilling. In this paper, an experimental and numerical study on laser percussion drilling was carried out. A two-dimension (2D) axisymmetric finite element (FE) model for simulation of temperature field and proceeding of hole formation during percussion drilling was developed. The FE model was validated by the corresponding experiment. Furthermore, a theoretical model for evaluation of temperature at melt front and velocity of melt ejection was presented in order to further validate the FE model and study the spatter deposition. The effects of laser peak power, pulse duty cycle and pulse repetition rate on hole diameter and spatter deposition were investigated by the developed models and experiments, in which the simulated results were in good agreement with the experiments. The study indicated that the size and temperature of the melt front significantly affected the hole diameter formation and spatter deposition during laser percussion drilling. The characteristic of melt front was mainly determined by the employed laser peak power, pulse repetition rate and pulse duty cycle. Based on the experimental and numerical study, the process parameters were optimised and a drilled-hole with low taper and low spatter deposition was obtained using a 3.5 kW CO2 laser. A microstructural and element compositional study was also performed in this work, by which the characteristics of microstructure and element composition in HAZ around laser drilled hole were revealed.