Co-reporter:Hans J. Reich and Robert J. Hondal
ACS Chemical Biology 2016 Volume 11(Issue 4) pp:821
Publication Date(Web):March 7, 2016
DOI:10.1021/acschembio.6b00031
The authors were asked by the Editors of ACS Chemical Biology to write an article titled “Why Nature Chose Selenium” for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173–1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se–O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides. The combination of these properties means that replacement of sulfur with selenium in nature results in a selenium-containing biomolecule that resists permanent oxidation. Multiple examples of this gain of function behavior from the literature are discussed.
Co-reporter:Gregg W. Snider, Christopher M. Dustin, Erik L. Ruggles, and Robert J. Hondal
Biochemistry 2014 Volume 53(Issue 3) pp:
Publication Date(Web):January 8, 2014
DOI:10.1021/bi400931k
High-molecular mass thioredoxin reductases (TRs) are pyridine nucleotide disulfide oxidoreductases that catalyze the reduction of the disulfide bond of thioredoxin (Trx). Trx is responsible for reducing multiple protein disulfide targets in the cell. TRs utilize reduced β-nicotinamide adenine dinucleotide phosphate to reduce a bound flavin prosthetic group, which in turn reduces an N-terminal redox center that has the conserved sequence CICVNVGCCT, where CIC is denoted as the interchange thiol while the thiol involved in charge-transfer complexation is denoted as CCT. The reduced N-terminal redox center reduces a C-terminal redox center on the opposite subunit of the head-to-tail homodimer, the C-terminal redox center that catalyzes the reduction of the Trx-disulfide. Variations in the amino acid sequence of the C-terminal redox center differentiate high-molecular mass TRs into different types. Type Ia TRs have tetrapeptide C-terminal redox centers of with a GCUG sequence, where U is the rare amino acid selenocysteine (Sec), while the tetrapeptide sequence in type Ib TRs has its Sec residue replaced with a conventional cysteine (Cys) residue and can use small polar amino acids such as serine and threonine in place of the flanking glycine residues. The TR from Plasmodium falciparum (PfTR) is similar in structure and mechanism to type Ia and type Ib TRs except that the C-terminal redox center is different in its amino acid sequence. The C-terminal redox center of PfTR has the sequence G534CGGGKCG541, and we classify it as a type II high-molecular mass TR. The oxidized type II redox motif will form a 20-membered disulfide ring, whereas the absence of spacer amino acids in the type I motif results in the formation of a rare eight-membered ring. We used site-directed mutagenesis and protein semisynthesis to investigate features of the distinctive type II C-terminal redox motif that help it perform catalysis. Deletion of Gly541 reduces thioredoxin reductase activity by ∼50-fold, most likely because of disruption of an important hydrogen bond between the amide NH group of Gly541 and the carbonyl of Gly534 that helps to stabilize the β–turn−β motif. Alterations of the 20-membered disulfide ring either by amino acid deletion or by substitution resulted in impaired catalytic activity. Subtle changes in the ring structure and size caused by using semisynthesis to substitute homocysteine for cysteine also caused significant reductions in catalytic activity, demonstrating the importance of the disulfide ring’s geometry in making the C-terminal redox center reactive for thiol–disulfide exchange. The data suggested to us that the transfer of electrons from the N-terminal redox center to the C-terminal redox center may be rate-limiting. We propose that the transfer of electrons from the N-terminal redox center in PfTR to the type II C-terminal disulfide is accelerated by the use of an “electrophilic activation” mechanism. In this mechanism, the type II C-terminal disulfide is polarized, making the sulfur atom of Cys540 electron deficient, highly electrophilic, and activated for thiol–disulfide exchange with the N-terminal redox center. This hypothesis was investigated by constructing chimeric PfTR mutant enzymes containing C-terminal type I sequences GCCG and GCUG, respectively. The PfTR-GCCG chimera had 500-fold less thioredoxin reductase activity than the native enzyme but still reduced selenocystine and lipoic acid efficiently. The PfTR-GCUG chimera had higher catalytic activity than the native enzyme with Trx, selenocystine, and lipoic acid as substrates. The results suggested to us that (i) Sec in the mutant enzyme accelerated the rate of thiol–disulfide exchange between the N- and C-terminal redox centers, (ii) the type II redox center evolved for efficient catalysis utilizing Cys instead of Sec, and (iii) the type II redox center of PfTR is partly responsible for substrate recognition of the cognate PfTrx substrate relative to noncognate thioredoxins.
Co-reporter:Adam P. Lothrop, Gregg W. Snider, Erik L. Ruggles, and Robert J. Hondal
Biochemistry 2014 Volume 53(Issue 3) pp:
Publication Date(Web):January 6, 2014
DOI:10.1021/bi400651x
Cytosolic thioredoxin reductase 1 (TR1) is the best characterized of the class of high-molecular weight (Mr) thioredoxin reductases (TRs). TR1 is highly dependent upon the rare amino acid selenocysteine (Sec) for the reduction of thioredoxin (Trx) and a host of small molecule substrates, as mutation of Sec to cysteine (Cys) results in a large decrease in catalytic activity for all substrate types. Previous work in our lab and others has shown that the mitochondrial TR (TR3) is much less dependent upon the use of Sec for the reduction of small molecules. The Sec-dependent substrate utilization behavior of TR1 may be the exception and not the rule as we show that a variety of high-Mr TRs from other organisms, including Drosophila melanogaster, Caenorhabditis elegans, and Plasmodium falciparum, do not require Sec to reduce small molecule substrates, including 5,5′-dithiobis(2-nitrobenzoic acid), lipoic acid, selenite, and selenocystine. The data show that high-Mr TRs can be divided into two groups based upon substrate utilization patterns: a TR1 group and a TR3-like group. We have constructed mutants of TR3-like enzymes from mouse, D. melanogaster, C. elegans, and P. falciparum, and the kinetic data from these mutants show that these enzymes are less dependent upon the use of Sec for the reduction of substrates. We posit that the mechanistic differences between TR1 and the TR3-like enzymes in this study are due to the presence of a “guiding bar”, amino acids 407–422, found in TR1, but not TR3-like enzymes. The guiding bar, proposed by Becker and co-workers [Fritz-Wolf, K., Urig, S., and Becker, K. (2007) The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. J. Mol. Biol. 370, 116–127], restricts the motion of the C-terminal tail containing the C-terminal Gly-Cys-Sec-Gly, redox active tetrapeptide so that only this C-terminal redox center can be reduced by the N-terminal redox center, with the exclusion of most other substrates. This makes TR1 highly dependent upon the use of Sec because the selenium atom is responsible for both accepting electrons from the N-terminal redox center and donating them to the substrate in this model. Loss of both Se-electrophilicity and Se-nucleophilicity in the Sec → Cys mutant of TR1 greatly reduces catalytic activity. TR3-like enzymes, in contrast, are less dependent upon the use of Sec because the absence of the guiding bar in these enzymes allows for greater access of the substrate to the N-terminal redox center and because they can make use of alternative mechanistic pathways that are not available to TR1.
Co-reporter:Adam P. Lothrop, Gregg W. Snider, Stevenson Flemer Jr., Erik L. Ruggles, Ronald S. Davidson, Audrey L. Lamb, and Robert J. Hondal
Biochemistry 2014 Volume 53(Issue 4) pp:
Publication Date(Web):January 15, 2014
DOI:10.1021/bi4007258
Mammalian thioredoxin reductase (TR) is a pyridine disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys). Selenium is a Janus-faced element because it is both highly nucleophilic and highly electrophilic. Cys orthologs of Sec-containing enzymes may compensate for the absence of a Sec residue by making the active site Cys residue more (i) nucleophilic, (ii) electrophilic, or (iii) reactive by increasing both S-nucleophilicity and S-electrophilicity. It has already been shown that the Cys ortholog TR from Drosophila melanogaster (DmTR) has increased S-nucleophilicity [Gromer, S., Johansson, L., Bauer, H., Arscott, L. D., Rauch, S., Ballou, D. P., Williams, C. H., Jr., Schrimer, R. H., and Arnér, E. S (2003) Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci. U.S.A. 100, 12618–12623]. Here we present evidence that DmTR also enhances the electrophilicity of Cys490 through the use of an “electrophilic activation” mechanism. This mechanism is proposed to work by polarizing the disulfide bond that occurs between Cys489 and Cys490 in the C-terminal redox center by the placement of a positive charge near Cys489. This polarization renders the sulfur atom of Cys490 electron deficient and enhances the rate of thiol/disulfide exchange that occurs between the N- and C-terminal redox centers. Our hypothesis was developed by using a strategy of homocysteine (hCys) for Cys substitution in the Cys-Cys redox dyad of DmTR to differentiate the function of each Cys residue. The results show that hCys could substitute for Cys490 with little loss of thioredoxin reductase activity, but that substitution of hCys for Cys489 resulted in a 238-fold reduction in activity. We hypothesize that replacement of Cys489 with hCys destroys an interaction between the sulfur atom of Cys489 and His464 crucial for the proposed electrophilic activation mechanism. This electrophilic activation serves as a compensatory mechanism in the absence of the more electrophilic Sec residue. We present an argument for the importance of S-electrophilicity in Cys orthologs of selenoenzymes.
Co-reporter:Adam P. Lothrop, Gregg W. Snider, Erik L. Ruggles, Amar S. Patel, Watson J. Lees, and Robert J. Hondal
Biochemistry 2014 Volume 53(Issue 4) pp:654-663
Publication Date(Web):January 15, 2014
DOI:10.1021/bi400658g
Mammalian thioredoxin reductase (TR) is a pyridine nucleotide disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys) in the redox-active tetrapeptide Gly-Cys-Sec-Gly motif to catalyze thiol/disulfide exchange reactions. Sec can accelerate the rate of these exchange reactions (i) by being a better nucleophile than Cys, (ii) by being a better electrophile than Cys, (iii) by being a better leaving group than Cys, or (iv) by using a combination of all three of these factors, being more chemically reactive than Cys. The role of the selenolate as a nucleophile in the reaction mechanism was recently demonstrated by creating a mutant of human thioredoxin reductase-1 in which the Cys497-Sec498 dyad of the C-terminal redox center was mutated to either a Ser497-Cys498 dyad or a Cys497-Ser498 dyad. Both mutant enzymes were incubated with human thioredoxin (Trx) to determine which mutant formed a mixed disulfide bond complex. Only the mutant containing the Ser497-Cys498 dyad formed a complex, and this structure has been determined by X-ray crystallography [Fritz-Wolf, K., Kehr, S., Stumpf, M., Rahlfs, S., and Becker, K. (2011) Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat. Commun. 2, 383]. This experimental observation most likely means that the selenolate is the nucleophile initially attacking the disulfide bond of Trx because a complex resulted only when Cys was present in the second position of the dyad. As a nucleophile, the selenolate of Sec helps to accelerate the rate of this exchange reaction relative to Cys in the Sec → Cys mutant enzyme. Another thiol/disulfide exchange reaction that occurs in the enzymatic cycle of the enzyme is the transfer of electrons from the thiolate of the interchange Cys residue of the N-terminal redox center to the eight-membered selenosulfide ring of the C-terminal redox center. The selenium atom of the selenosulfide could accelerate this exchange reaction by being a good leaving group (attack at the sulfur atom) or by being a good electrophile (attack at the selenium atom). Here we provide strong evidence that the selenium atom is attacked in this exchange step. This was shown by creating a mutant enzyme containing a Gly-Gly-Seccoo- motif that had 0.5% of the activity of the wild-type enzyme. This mutant lacks the adjacent, resolving Cys residue, which acts by attacking the mixed selenosulfide bond that occurs between the enzyme and substrate. A similar result was obtained when Sec was replaced with homocysteine. These results highlight the role of selenium as an electron acceptor in the catalytic mechanism of thioredoxin reductase as well as its established role as a donor of an electron to the substrate.
Co-reporter:Gregg W. Snider, Erik Ruggles, Nadeem Khan, and Robert J. Hondal
Biochemistry 2013 Volume 52(Issue 32) pp:
Publication Date(Web):July 18, 2013
DOI:10.1021/bi400462j
Mammalian thioredoxin reductase (TR) is a selenocysteine (Sec)-containing homodimeric pyridine nucleotide oxidoreductase which catalyzes the reduction of oxidized thioredoxin. We have previously demonstrated the full-length mitochondrial mammalian TR (mTR3) enzyme to be resistant to inactivation from exposure to 50 mM H2O2. Because a Sec residue oxidizes more rapidly than a cysteine (Cys) residue, it has been previously thought that Sec-containing enzymes are “sensitive to oxidation” compared to Cys-orthologues. Here we show for the first time a direct comparison of the abilities of Sec-containing mTR3 and the Cys-orthologue from D. melanogaster (DmTR) to resist inactivation by oxidation from a variety of oxidants including H2O2, hydroxyl radical, peroxynitrite, hypochlorous acid, hypobromous acid, and hypothiocyanous acid. The results show that the Sec-containing TR is far superior to the Cys-orthologue TR in resisting inactivation by oxidation. To further test our hypothesis that the use of Sec confers strong resistance to inactivation by oxidation, we constructed a chimeric enzyme in which we replaced the active site Cys nucleophile of DmTR with a Sec residue using semisynthesis. The chimeric Sec-containing enzyme has similar ability to resist inactivation by oxidation as the wild type Sec-containing TR from mouse mitochondria. The use of Sec in the chimeric enzyme “rescued” the enzyme from oxidant-induced inactivation for all of the oxidants tested in this study, in direct contrast to previous understanding. We discuss two possibilities for this rescue effect from inactivation under identical conditions of oxidative stress: (i) Sec resists overoxidation and inactivation, whereas a Cys residue can be permanently overoxidized to the sulfinic acid form, and (ii) Sec protects the body of the enzyme from harmful oxidation by allowing the enzyme to metabolize (turnover) various oxidants much better than a Cys-containing TR.
Co-reporter:Brian Cunniff, Gregg W. Snider, Nicholas Fredette, Robert J. Hondal, Nicholas H. Heintz
Analytical Biochemistry 2013 Volume 443(Issue 1) pp:34-40
Publication Date(Web):1 December 2013
DOI:10.1016/j.ab.2013.08.013
Abstract
Thioredoxin reductase (TR) is an oxidoreductase responsible for maintaining thioredoxin in the reduced state, thereby contributing to proper cellular redox homeostasis. The C-terminal active site of mammalian TR contains the rare amino acid selenocysteine, which is essential to its activity. Alterations in TR activity due to changes in cellular redox homeostasis are found in clinical conditions such as cancer, viral infection, and various inflammatory processes; therefore, quantification of thioredoxin activity can be a valuable indicator of clinical conditions. Here we describe a new direct assay, termed the SC–TR assay, to determine the activity of TR based on the reduction of selenocystine, a diselenide-bridged amino acid. Rather than being an end-point assay as in older methods, the SC–TR assay directly monitors the continuous consumption of NADPH at 340 nm by TR as it reduces selenocystine. The SC–TR assay can be used in a cuvette using traditional spectrophotometry or as a 96-well plate-based format using a plate reader. In addition, the SC–TR assay is compatible with the use of nonionic detergents, making it more versatile than other methods using cell lysates.
Co-reporter:Robert J. Hondal;Erik L. Ruggles
Amino Acids 2011 Volume 41( Issue 1) pp:73-89
Publication Date(Web):2011 June
DOI:10.1007/s00726-010-0494-6
This review covers three different chemical explanations that could account for the requirement of selenium in the form of selenocysteine in the active site of mammalian thioredoxin reductase. These views are the following: (1) the traditional view of selenocysteine as a superior nucleophile relative to cysteine, (2) the superior leaving group ability of a selenol relative to a thiol due to its significantly lower pKa and, (3) the superior ability of selenium to accept electrons (electrophilicity) relative to sulfur. We term these chemical explanations as the “chemico-enzymatic” function of selenium in an enzyme. We formally define the chemico-enzymatic function of selenium as its specific chemical property that allows a selenoenzyme to catalyze its individual reaction. However we, and others, question whether selenocysteine is chemically necessary to catalyze an enzymatic reaction since cysteine-homologs of selenocysteine-containing enzymes catalyze their specific enzymatic reactions with high catalytic efficiency. There must be a unique chemical reason for the presence of selenocysteine in enzymes that explains the biological pressure on the genome to maintain the complex selenocysteine-insertion machinery. We term this biological pressure the “chemico-biological” function of selenocysteine. We discuss evidence that this chemico-biological function is the ability of selenoenzymes to resist inactivation by irreversible oxidation. The way in which selenocysteine confers resistance to oxidation could be due to the superior ability of the oxidized form of selenocysteine (Sec-SeO2−, seleninic acid) to be recycled back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of cysteine-sulfinic acid to cysteine (Cys-SO2− to Cys-SH).
Co-reporter:Gregg Snider, Leah Grout, Erik L. Ruggles, and Robert J. Hondal
Biochemistry 2010 Volume 49(Issue 48) pp:
Publication Date(Web):November 1, 2010
DOI:10.1021/bi101130t
Mammalian thioredoxin reductase is a homodimeric pyridine nucleotide disulfide oxidoreductase that contains the rare amino acid selenocysteine (Sec) on a C-terminal extension. We previously have shown that a truncated version of mouse mitochondrial thioredoxin reductase missing this C-terminal tail will catalyze the reduction of a number of small molecules. Here we show that the truncated thioredoxin reductase will catalyze the reduction of methaneseleninic acid. This reduction is fast at pH 6.1 and is only 4-fold slower than that of the full-length enzyme containing Sec. This finding suggested to us that if the C-terminal Sec residue in the holoenzyme became oxidized to the seleninic acid form (Sec-SeO2−) that it would be quickly reduced back to an active state by enzymic thiols and further suggested to us that the enzyme would be very resistant to irreversible inactivation by oxidation. We tested this hypothesis by reducing the enzyme with NADPH and subjecting it to high concentrations of H2O2 (up to 50 mM). The results show that the enzyme strongly resisted inactivation by 50 mM H2O2. To determine the redox state of the C-terminal Sec residue, we attempted to inhibit the enzyme with dimedone. Dimedone alkylates protein sulfenic acid residues and presumably will alkylate selenenic acid (Sec-SeOH) residues as well. The enzyme was not inhibited by dimedone even when a 150-fold excess was added to the reaction mixture containing the enzyme and H2O2. We also tested the ability of the truncated enzyme to resist inactivation by oxidation as well and found that it also was resistant to high concentrations of H2O2. One assumption for the use of Sec in enzymes is that it is catalytically superior to the use of cysteine. We and others have previously suggested that there are reasons for the use of Sec in enzymes that are unrelated to the conversion of substrate to product. The data presented here support this assertion. The results also imply that the redox signaling function of the thioredoxin system can remain active under oxidative stress.
Co-reporter:Adam P. Lothrop, Erik L. Ruggles and Robert J. Hondal
Biochemistry 2009 Volume 48(Issue 26) pp:
Publication Date(Web):April 14, 2009
DOI:10.1021/bi802146w
Mammalian thioredoxin reductase (TR) contains a rare selenocysteine (Sec) residue in a conserved redox-active tetrapeptide of sequence Gly-Cys1-Sec2-Gly. The high chemical reactivity of the Sec residue is thought to confer broad substrate specificity to the enzyme. In addition to utilizing thioredoxin (Trx) as a substrate, other substrates are protein disulfide isomerase, glutaredoxin, glutathione peroxidase, NK-lysin/granulysin, HIV Tat protein, H2O2, lipid hydroperoxides, vitamin K, ubiquinone, juglone, ninhydrin, alloxan, dehydroascorbate, DTNB, lipoic acid/lipoamide, S-nitrosoglutathione, selenodiglutathione, selenite, methylseleninate, and selenocystine. Here we show that the Cys2 mutant enzyme or the N-terminal reaction center alone can reduce Se-containing substrates selenocystine and selenite with only slightly less activity than the wild-type enzyme, in stark contrast to when Trx is used as the substrate when the enzyme suffers a 175−550-fold reduction in kcat. Our data support the use of alternative mechanistic pathways for the Se-containing substrates that bypass a critical ring-forming step when Trx is the substrate. We also show that lipoic acid can be reduced through a Sec-independent mechanism that involves the N-terminal reaction center. These results show that the broad substrate specificity of the mammalian enzyme is not due to the presence of the rare Sec residue but is due to the catalytic power of the N-terminal reaction center. We hypothesize that the N-terminal reaction center can reduce substrates (i) with good leaving groups such as DTNB, (ii) that are highly electrophilic such as selenite, or (iii) that are activated by strain such as lipoic acid/lipoamide. We also show that the absence of Sec only changed the IC50 for aurothioglucose by a factor of 1.7 in the full-length mammalian enzyme (83−142 nM), but surprisingly the truncated enzyme showed much stronger inhibition (25 nM). This contrasts with auranofin, where the absence of Sec more strongly perturbed inhibition.
Co-reporter:Erik L. Ruggles, P. Bruce Deker, Robert J. Hondal
Tetrahedron 2009 65(7) pp: 1257-1267
Publication Date(Web):
DOI:10.1016/j.tet.2008.11.085
Co-reporter:Brian M. Lacey, Brian E. Eckenroth, Stevenson Flemer Jr. and Robert J. Hondal
Biochemistry 2008 Volume 47(Issue 48) pp:12810-12821
Publication Date(Web):November 5, 2008
DOI:10.1021/bi800951f
Most high Mr thioredoxin reductases (TRs) have the unusual feature of utilizing a vicinal disulfide bond (Cys1−Cys2) which forms an eight-membered ring during the catalytic cycle. Many eukaryotic TRs have replaced the Cys2 position of the dyad with the rare amino acid selenocysteine (Sec). Here we demonstrate that Cys- and Sec-containing TRs are distinguished by the importance each class of enzymes places on the eight-membered ring structure in the catalytic cycle. This hypothesis was explored by studying the truncated enzyme missing the C-terminal ring structure in conjunction with oxidized peptide substrates to investigate the reduction and opening of this dyad. The peptide substrates were identical in sequence to the missing part of the enzyme, containing either a disulfide or selenylsulfide linkage, but were differentiated by the presence (cyclic) and absence (acyclic) of the ring structure. The ratio of these turnover rates informs that the ring is only of modest importance for the truncated mouse mitochondrial Sec-TR (ring/no ring = 32), while the ring structure is highly important for the truncated Cys-TRs from Drosophila melanogaster and Caenorhabditis elegans (ring/no ring > 1000). All three enzymes exhibit a similar dependence upon leaving group pKa as shown by the use of the acyclic peptides as substrates. These two factors can be reconciled for Cys-TRs if the ring functions to simultaneously allow for attack by a nearby thiolate while correctly positioning the leaving group sulfur atom to accept a proton from the enzymic general acid. For Sec-TRs the ring is unimportant because the lower pKa of the selenol relative to a thiol obviates its need to be protonated upon S−Se bond scission and permits physical separation of the selenol and the general acid. Further study of the biochemical properties of the truncated Cys and Sec TR enzymes demonstrates that the chemical advantage conferred on the eukaryotic enzyme by a selenol is the ability to function at acidic pH.
Co-reporter:Robert J. Hondal
Biochimica et Biophysica Acta (BBA) - General Subjects (November 2009) Volume 1790(Issue 11) pp:
Publication Date(Web):1 November 2009
DOI:10.1016/j.bbagen.2009.04.015
The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries.This review focuses on chemical approaches to produce selenoproteins and study the mechanism of selenoenzymes. The use of intein-mediated peptide ligation is discussed with respect to the production of the mammalian selenoenzymes thioredoxin reductase and selenoprotein R, also known as methionine sulfoxide reductase B1. New methods for removing protecting groups from selenocysteine post-synthesis and methods for selenosulfide/diselenide formation are also reviewed.Chemical approaches have also been used to study the enzymatic mechanism of thioredoxin reductase. The approach divides the enzyme into two modules, a large protein module lacking selenocysteine and a small, synthetic selenocysteine-containing peptide. Study of this semisynthetic enzyme has revealed three distinct enzymatic pathways that depend on the properties of the substrate. The enzyme utilizes a macromolecular mechanism for protein substrates, a second mechanism for small molecule substrates and a third pathway for selenium-containing substrates such as selenocystine.
Co-reporter:N. Connor Payne, Andrew Geissler, Aileen Button, Alexandru R. Sasuclark, ... Robert J. Hondal
Free Radical Biology and Medicine (March 2017) Volume 104() pp:249-261
Publication Date(Web):1 March 2017
DOI:10.1016/j.freeradbiomed.2017.01.028
•Redox chemistry of sulfur- and selenium-nucleobases is remarkably different.•Oxidation of 2-thiouracil-5-carboxylic acid leads to irreversible desulfurization.•Oxidation of 2-selenouracil-5-carboxylic acid is reversible.•Incorporation of selenium into tRNA may allow it to resist irreversible oxidation.•Selenium in tRNA may help cells resist oxidative stress.Selenium is present in proteins in the form of selenocysteine, where this amino acid serves catalytic oxidoreductase functions. The use of selenocysteine in nature is strongly associated with redox catalysis. However, selenium is also found in a 2-selenouridine moiety at the wobble position of tRNAGlu, tRNAGln and tRNALys. It is thought that the modifications of the wobble position of the tRNA improves the selectivity of the codon-anticodon pair as a result of the physico-chemical changes that result from substitution of sulfur and selenium for oxygen. Both selenocysteine and 2-selenouridine have widespread analogs, cysteine and thiouridine, where sulfur is used instead. To examine the role of selenium in 2-selenouridine, we comparatively analyzed the oxidation reactions of sulfur-containing 2-thiouracil-5-carboxylic acid (s2c5Ura) and its selenium analog 2-selenouracil-5-carboxylic acid (se2c5Ura) using 1H-NMR spectroscopy, 77Se-NMR spectroscopy, and liquid chromatography-mass spectrometry. Treatment of s2c5Ura with hydrogen peroxide led to oxidized intermediates, followed by irreversible desulfurization to form uracil-5-carboxylic acid (c5Ura). In contrast, se2c5Ura oxidation resulted in a diselenide intermediate, followed by conversion to the seleninic acid, both of which could be readily reduced by ascorbate and glutathione. Glutathione and ascorbate only minimally prevented desulfurization of s2c5Ura, whereas very little deselenization of se2c5Ura occurred in the presence of the same antioxidants. In addition, se2c5Ura but not s2c5Ura showed glutathione peroxidase activity, further suggesting that oxidation of se2c5Ura is readily reversible, while oxidation of s2c5Ura is not. The results of the study of these model nucleobases suggest that the use of 2-selenouridine is related to resistance to oxidative inactivation that otherwise characterizes 2-thiouridine. As the use of selenocysteine in proteins also confers resistance to oxidation, our findings suggest a common mechanism for the use of selenium in biology.Download high-res image (219KB)Download full-size image
Co-reporter:Brian Cunniff, Gregg W. Snider, Nicholas Fredette, Jason Stumpff, ... Nicholas H. Heintz
Redox Biology (2014) Volume 2() pp:475-484
Publication Date(Web):1 January 2014
DOI:10.1016/j.redox.2014.01.021
•Sensitivity of TR1 and TR2 vs. PRXs to oxidative inactivation.•Role of Sec vs. Cys in the active site of TR in cell viability.•Reduction of roGFP as compared to PRX after oxidation.•Effect of TR1 and TR2 on oxidation state of cellular compartments.Thioredoxin reductase (TR) catalyzes the reduction of thioredoxin (TRX), which in turn reduces mammalian typical 2-Cys peroxiredoxins (PRXs 1–4), thiol peroxidases implicated in redox homeostasis and cell signaling. Typical 2-Cys PRXs are inactivated by hyperoxidation of the peroxidatic cysteine to cysteine-sulfinic acid, and regenerated in a two-step process involving retro-reduction by sulfiredoxin (SRX) and reduction by TRX. Here transient exposure to menadione and glucose oxidase was used to examine the dynamics of oxidative inactivation and reactivation of PRXs in mouse C10 cells expressing various isoforms of TR, including wild type cytoplasmic TR1 (Sec-TR1) and mitochondrial TR2 (Sec-TR2) that encode selenocysteine, as well as mutants of TR1 and TR2 in which the selenocysteine codon was changed to encode cysteine (Cys-TR1 or Cys-TR2). In C10 cells endogenous TR activity was insensitive to levels of hydrogen peroxide that hyperoxidize PRXs. Expression of Sec-TR1 increased TR activity, reduced the basal cytoplasmic redox state, and increased the rate of reduction of a redox-responsive cytoplasmic GFP probe (roGFP), but did not influence either the rate of inactivation or the rate of retro-reduction of PRXs. In comparison to roGFP, which was reduced within minutes once oxidants were removed reduction of 2-Cys PRXs occurred over many hours. Expression of wild type Sec-TR1 or Sec-TR2, but not Cys-TR1 or TR2, increased the rate of reduction of PRXs and improved cell survival after menadione exposure. These results indicate that expression levels of TR do not reduce the severity of initial oxidative insults, but rather govern the rate of reduction of cellular factors required for cell viability. Because Sec-TR is completely insensitive to cytotoxic levels of hydrogen peroxide, we suggest TR functions at the top of a redox pyramid that governs the oxidation state of peroxiredoxins and other protein factors, thereby dictating a hierarchy of phenotypic responses to oxidative insults.Download full-size image