Co-reporter:Xiangwen Liao, Fang Yang, Hongyan Li, Pui-Kin So, Zhongping Yao, Wei Xia, and Hongzhe Sun
Inorganic Chemistry December 18, 2017 Volume 56(Issue 24) pp:14823-14823
Publication Date(Web):November 28, 2017
DOI:10.1021/acs.inorgchem.7b01904
The thioredoxin system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin (Trx), is one of the major disulfide reductase systems used by bacteria against oxidative stress. In particular, this reductase system is crucial for the survival of the pathogenic bacterium Staphylococcus aureus, which lacks a natural glutathione/glutaredoxin (Grx) system. Although silver ions and silver-containing materials have been used as antibacterial agents for centuries, the antibacterial mechanism of silver is not well-understood. Herein, we demonstrate that silver ions bind to the active sites of S. aureus TrxR and Trx with dissociation constants of 1.4 ± 0.1 μM and 15.0 ± 5.0 μM and stoichiometries of 1 and 2 Ag+ ions per protein, respectively. Importantly, silver ion binding leads to oligomerization and functional disruption of TrxR as well as Trx. Silver also depleted intracellular thiol levels in S. aureus, disrupting bacterial thiol-redox homeostasis. Our study provides new insights into the antibacterial mechanism of silver ions. Moreover, the Trx and TrxR system might serve as a feasible target for the design of antibacterial drugs.
Co-reporter:Xiaojun He, Xiangwen Liao, Hongyan Li, Wei Xia, and Hongzhe Sun
Inorganic Chemistry December 18, 2017 Volume 56(Issue 24) pp:15041-15041
Publication Date(Web):December 4, 2017
DOI:10.1021/acs.inorgchem.7b02380
Ferric uptake regulator (Fur) of Helicobacter pylori is a global regulator that is important for bacterial colonization and survival within the gastric mucosa. H. pylori Fur (HpFur) is unique in its ability to regulate gene expression in both metal-bound (holo-Fur) and metal-free (apo-Fur) forms. Bismuth-based drugs are widely used for the treatment of H. pylori infection. However, the mechanism of action of bismuth drug was not fully understood. Recently, it has been reported that bismuth drugs could interfere with the bacterial ferric uptake pathway and inhibit bacterial growth, implying intrinsic correlation between bismuth drug and bacterial iron metabolism. Herein, we demonstrate that Bi(III) binds to HpFur protein specifically at the physiologically important S1 site, which further leads to protein oligomerization and loss of DNA binding capability. The targeting of HpFur by bismuth drugs significantly reduced transcription levels of its regulated genes, which are crucial for bacterial physiology and metabolism. Our studies present direct evidence that perturbation of iron metabolism in H. pylori by bismuth might serve as one of the mechanisms for the antimicrobial activity of bismuth drugs.
Co-reporter:Xiangwen Liao;Fang Yang;Runming Wang;Xiaojun He;Hongyan Li;Richard Y. T. Kao;Hongzhe Sun
Chemical Science (2010-Present) 2017 vol. 8(Issue 12) pp:8061-8066
Publication Date(Web):2017/11/20
DOI:10.1039/C7SC02251D
Staphylococcus aureus is one of the most common pathogenic bacteria that causes human infectious diseases. The emergence of antibiotic-resistant strains of S. aureus promotes the development of new anti-bacterial strategies. Silver ions (Ag+) have attracted profound attention due to their broad-spectrum antimicrobial activities. Although the antibacterial properties of silver have been well known for many centuries, its mechanism of action remains unclear and its protein targets are rarely reported. Herein, we identify the catabolite control protein A (CcpA) of S. aureus as a putative target for Ag+. CcpA binds 2 molar equivalents of Ag+via its two cysteine residues (Cys216 and Cys242). Importantly, Ag+ binding induces CcpA oligomerization and abolishes its DNA binding capability, which further attenuates S. aureus growth and suppresses α-hemolysin toxicity. This study extends our understanding of the bactericidal effects of silver.