Yujiro Hayashi

Find an error

Name:
Organization: Tokyo University of Science
Department: Department of Industrial Chemistry, Faculty of Engineering
Title:
Co-reporter:Yujiro Hayashi, Yusuke Yasui, Masahiro Kojima, Tsuyoshi Kawamura and Hayato Ishikawa  
Chemical Communications 2012 vol. 48(Issue 38) pp:4570-4572
Publication Date(Web):30 Mar 2012
DOI:10.1039/C2CC31230A
The direct aldol reaction of an α-alkyl-α-oxo aldehyde was catalyzed by trifluoromethyl-substituted diarylprolinol 1 to afford a γ-oxo-β-hydroxy-α-substituted aldehyde in good yield with excellent anti-selectivity and excellent enantioselectivity.
Co-reporter:Dr. Yujiro Hayashi;Daichi Okamura;Shigenobu Umemiya;Dr. Tadafumi Uchimaru
ChemCatChem 2012 Volume 4( Issue 7) pp:959-962
Publication Date(Web):
DOI:10.1002/cctc.201200161

Abstract

Among 1,4-addition and 1,6-addition reactions, 1,4-addition reaction is the main reaction mode in the Michael reaction of α,β-γ,δ-diunsaturated aldehyde with several nucleophiles catalyzed by diphenylprolinol silyl ether via iminium ion intermediate. The 1,4-addition products, which possess excellent enantioselectivity and alkene moiety, are useful chiral building blocks. The ab initio calculation indicates that 1,4-addition reaction is preferable in terms of π-orbital coefficient and Mulliken/CHelpG atomic charge.

Co-reporter: Pier Giorgio Cozzi; Yujiro Hayashi
ChemCatChem 2012 Volume 4( Issue 7) pp:
Publication Date(Web):
DOI:10.1002/cctc.201290022
Co-reporter: Pier Giorgio Cozzi; Yujiro Hayashi
ChemCatChem 2012 Volume 4( Issue 7) pp:887-889
Publication Date(Web):
DOI:10.1002/cctc.201200331
Co-reporter:Yujiro Hayashi ; Hiroaki Gotoh ; Masakazu Honma ; Kuppusamy Sankar ; Indresh Kumar ; Hayato Ishikawa ; Kohzo Konno ; Hiroharu Yui ; Seiji Tsuzuki ;Tadafumi Uchimaru
Journal of the American Chemical Society 2011 Volume 133(Issue 50) pp:20175-20185
Publication Date(Web):November 3, 2011
DOI:10.1021/ja108516b
Diphenylprolinol silyl ether was found to be an effective organocatalyst for promoting the asymmetric, catalytic, intramolecular [6 + 2] cycloaddition reactions of fulvenes substituted at the exocyclic 6-position with a δ-formylalkyl group to afford synthetically useful linear triquinane derivatives in good yields and excellent enantioselectivities. The cis-fused triquinane derivatives were obtained exclusively; the trans-fused isomers were not detected among the reaction products. The intramolecular [6 + 2] cycloaddition occurs between the fulvene functionality (6π) and the enamine double bond (2π) generated from the formyl group in the substrates and the diphenylprolinol silyl ether. The absolute configuration of the reaction products was determined by vibrational circular dichroism. The reaction mechanism was investigated using molecular orbital calculations, B3LYP and MP2 geometry optimizations, and subsequent single-point energy evaluations on model reaction sequences. These calculations revealed the following: (i) The intermolecular [6 + 2] cycloaddition of a fulvene and an enamine double bond proceeds in a stepwise mechanism via a zwitterionic intermediate. (ii) On the other hand, the intramolecular [6 + 2] cycloaddition leading to the cis-fused triquinane skeleton proceeds in a concerted mechanism via a highly asynchronous transition state. (iii) The fulvene functionality and the enamine double bond adopt the gauche-syn conformation during the C–C bond formation processes in the [6 + 2] cycloaddition. (iv) The energy profiles calculated for the intramolecular reaction explain the observed exclusive formation of the cis-fused triquinane derivatives in the [6 + 2] cycloaddition reactions. The reasons for the enantioselectivity seen in these [6 + 2] cycloaddition reactions are also discussed.
Co-reporter:Hayato Ishikawa;Bojan P. Bondzic
European Journal of Organic Chemistry 2011 Volume 2011( Issue 30) pp:6020-6031
Publication Date(Web):
DOI:10.1002/ejoc.201100074

Abstract

A microflow reaction of the Curtius rearrangement by using trimethylsilyl azide as an azide source, followed by trapping of the generated isocyanate with a nucleophile was established, which is safe, inexpensive, and suitable for large-scale synthesis. By this flow reaction in the Curtius rearrangement and recrystallization of the late-stage acetamide intermediate the third-generation synthesis of (–)-Oseltamivir has been established, which is efficient, practical, and safe.

Co-reporter:Krystyna Patora-Komisarska;Meryem Benohoud;Hayato Ishikawa;Dieter Seebach
Helvetica Chimica Acta 2011 Volume 94( Issue 5) pp:719-745
Publication Date(Web):
DOI:10.1002/hlca.201100122

Abstract

The amine-catalyzed enantioselective Michael addition of aldehydes to nitro alkenes (Scheme 1) is known to be acid-catalyzed (Fig. 1). A mechanistic investigation of this reaction, catalyzed by diphenylprolinol trimethylsilyl ether is described. Of the 13 acids tested, 4-NO2C6H4OH turned out to be the most effective additive, with which the amount of catalyst could be reduced to 1 mol-% (Tables 25). Fast formation of an amino-nitro-cyclobutane 12 was discovered by in situ NMR analysis of a reaction mixture. Enamines, preformed from the prolinol ether and aldehydes (benzene/molecular sieves), and nitroolefins underwent a stoichiometric reaction to give single all-trans-isomers of cyclobutanes (Fig. 3) in a [2+2] cycloaddition. This reaction was shown, in one case, to be acid-catalyzed (Fig. 4) and, in another case, to be thermally reversible (Fig. 5). Treatment of benzene solutions of the isolated amino-nitro-cyclobutanes with H2O led to mixtures of 4-nitro aldehydes (the products 7 of overall Michael addition) and enamines 13 derived thereof (Figs. 69). From the results obtained with specific examples, the following tentative, general conclusions are drawn for the mechanism of the reaction (Schemes 2 and 3): enamine and cyclobutane formation are fast, as compared to product formation; the zwitterionic primary product 5 of C,C-bond formation is in equilibrium with the product of its collapse (the cyclobutane) and with its precursors (enamine and nitro alkene); when protonated at its nitronate anion moiety the zwitterion gives rise to an iminium ion 6, which is hydrolyzed to the desired nitro aldehyde 7 or deprotonated to an enamine 13. While the enantioselectivity of the reaction is generally very high (>97% ee), the diastereoselectivity depends upon the conditions, under which the reaction is carried out (Fig. 10 and Tables 15). Various acid-catalyzed steps have been identified. The cyclobutanes 12 may be considered an off-cycle ‘reservoir’ of catalyst, and the zwitterions 5 the ‘key players’ of the process (bottom part of Scheme 2 and Scheme 3).

Co-reporter:Dr. Hayato Ishikawa;Masakazu Honma ;Dr. Yujiro Hayashi
Angewandte Chemie International Edition 2011 Volume 50( Issue 12) pp:
Publication Date(Web):
DOI:10.1002/anie.201100625
Co-reporter:Dr. Hayato Ishikawa;Masakazu Honma ;Dr. Yujiro Hayashi
Angewandte Chemie International Edition 2011 Volume 50( Issue 12) pp:2824-2827
Publication Date(Web):
DOI:10.1002/anie.201006204
Co-reporter:Dr. Hayato Ishikawa;Masakazu Honma ;Dr. Yujiro Hayashi
Angewandte Chemie 2011 Volume 123( Issue 12) pp:2876-2879
Publication Date(Web):
DOI:10.1002/ange.201006204
Co-reporter:Dr. Yujiro Hayashi;Tatsuya Urushima;Daisuke Sakamoto;Kou Torii ;Dr. Hayato Ishikawa
Chemistry - A European Journal 2011 Volume 17( Issue 42) pp:11715-11718
Publication Date(Web):
DOI:10.1002/chem.201101668
Co-reporter:Tatsuya Urushima;Dr. Hayato Ishikawa ;Dr. Yujiro Hayashi
Chemistry - A European Journal 2011 Volume 17( Issue 30) pp:8273-8276
Publication Date(Web):
DOI:10.1002/chem.201101077
Co-reporter:Dr. Yujiro Hayashi;Yusuke Yasui;Tsuyoshi Kawamura;Masahiro Kojima ;Dr. Hayato Ishikawa
Angewandte Chemie International Edition 2011 Volume 50( Issue 12) pp:2804-2807
Publication Date(Web):
DOI:10.1002/anie.201005577
Co-reporter:Dr. Yujiro Hayashi;Takahiko Itoh ;Dr. Hayato Ishikawa
Angewandte Chemie International Edition 2011 Volume 50( Issue 17) pp:3920-3924
Publication Date(Web):
DOI:10.1002/anie.201006885
Co-reporter:Dr. Hayato Ishikawa;Satoshi Sawano;Yusuke Yasui;Yusuke Shibata ;Dr. Yujiro Hayashi
Angewandte Chemie International Edition 2011 Volume 50( Issue 16) pp:3774-3779
Publication Date(Web):
DOI:10.1002/anie.201005386
Co-reporter:Dr. Hayato Ishikawa;Satoshi Sawano;Yusuke Yasui;Yusuke Shibata ;Dr. Yujiro Hayashi
Angewandte Chemie 2011 Volume 123( Issue 16) pp:3858-3863
Publication Date(Web):
DOI:10.1002/ange.201005386
Co-reporter:Dr. Yujiro Hayashi;Takahiko Itoh ;Dr. Hayato Ishikawa
Angewandte Chemie 2011 Volume 123( Issue 17) pp:4006-4010
Publication Date(Web):
DOI:10.1002/ange.201006885
Co-reporter:Dr. Yujiro Hayashi;Yusuke Yasui;Tsuyoshi Kawamura;Masahiro Kojima ;Dr. Hayato Ishikawa
Angewandte Chemie 2011 Volume 123( Issue 12) pp:2856-2859
Publication Date(Web):
DOI:10.1002/ange.201005577
Co-reporter:Dr. Hayato Ishikawa;Masakazu Honma ;Dr. Yujiro Hayashi
Angewandte Chemie 2011 Volume 123( Issue 12) pp:
Publication Date(Web):
DOI:10.1002/ange.201100625
Co-reporter:Tatsuya Urushima, Yusuke Yasui, Hayato Ishikawa and Yujiro Hayashi
Organic Letters 2010 Volume 12(Issue 13) pp:2966-2969
Publication Date(Web):June 8, 2010
DOI:10.1021/ol1009812
Diarylprolinol was found to be an effective organocatalyst of the direct, enantioselective aldol reaction of commercially available polymeric ethyl glyoxylate, affording γ-ethoxycarbonyl-β-hydroxy aldehydes, versatile synthetic intermediates, in good yield with excellent enantioselectivity.
Co-reporter:Bojan P. Bondzic, Tatsuya Urushima, Hayato Ishikawa, and Yujiro Hayashi
Organic Letters 2010 Volume 12(Issue 23) pp:5434-5437
Publication Date(Web):November 4, 2010
DOI:10.1021/ol102269s
Asymmetric epoxidation of α-substituted acroleins with hydrogen peroxide has been catalyzed by diphenylprolinol diphenylmethylsilyl ether to afford α-substituted-β,β-unsubstituted-α,β-epoxy aldehyde with excellent enantioselectivity and the generation of a chiral quaternary carbon center. The method was applied to a short synthesis of (R)-methyl palmoxirate.
Co-reporter:Tatsuya Urushima, Daisuke Sakamoto, Hayato Ishikawa, and Yujiro Hayashi
Organic Letters 2010 Volume 12(Issue 20) pp:4588-4591
Publication Date(Web):September 20, 2010
DOI:10.1021/ol1018932
An efficient, asymmetric, four-component, one-pot synthesis of highly substituted piperidines with excellent diastereo- and enantioselectivity was established through the diphenylprolinol silyl ether mediated Michael reaction of aldehyde and nitroalkene, followed by the domino aza-Henry reaction/hemiaminalization reaction and a Lewis acid mediated allylation or cyanation reaction. All carbons of the piperidine ring are substituted with different groups, and its five contiguous stereocenters are completely controlled in both relative and absolute senses.
Co-reporter:Junichiro Yamaguchi Dr. Dr.
Chemistry - A European Journal 2010 Volume 16( Issue 13) pp:3884-3901
Publication Date(Web):
DOI:10.1002/chem.200902433

Abstract

This review focuses on the synthetic strategies used for the construction of fumagillin, ovalicin, and other natural products of this family that are known angiogenesis inhibitors. These compounds are comprised of a cyclohexane framework, two epoxides, and five or six contiguous stereogenic centers. The first total syntheses of fumagillin and ovalicin were reported by Corey in 1972 and 1985, respectively. There were numerous studies directed at these natural products in the decades that followed with many reports appearing in the year 2000 or later. Despite the relatively small size of these molecules, their syntheses highlight the efficient construction of stereogenic centers in organic synthesis.

Co-reporter:Yujiro Hayashi Dr.;Hirofumi Yamaguchi;Maya Toyoshima;Kotaro Okado;Takumi Toyo;Mitsuru Shoji  Dr.
Chemistry - A European Journal 2010 Volume 16( Issue 33) pp:10150-10159
Publication Date(Web):
DOI:10.1002/chem.201000795

Abstract

The synthesis of a protected dephosphofostriecin, and thereby a formal synthesis of fostriecin, has been accomplished. The synthetic challenges were the construction of four stereogenic centers and the conformationally labile cis-cis-trans-triene moiety. Previous total syntheses have employed at least two asymmetric reactions that required the use of an external chiral auxiliary. Although remote stereoinduction in a 1,4-relationship is considered difficult, we have developed a notable 1,4-asymmetric induction that utilizes an alkyne–cobalt complex for the control of C5 stereochemistry by the C8 stereogenic center. The stereochemistry at C11 was established by 1,3-asymmetric induction with a higher-order alkynyl-zinc reagent. Thus, only one asymmetric reaction requiring an external chiral auxiliary was employed in this route. The labile cis-cis-trans-triene unit was constructed at a late stage of the synthesis by diastereoselective coupling of a dienyne and an aldehyde unit, followed by reduction.

Co-reporter:Dr. Hayato Ishikawa;Takaki Suzuki;Dr. Hideo Orita;Dr. Tadafumi Uchimaru;Dr. Yujiro Hayashi
Chemistry - A European Journal 2010 Volume 16( Issue 42) pp:12616-12626
Publication Date(Web):
DOI:10.1002/chem.201001108

Abstract

The efficient asymmetric total synthesis of (−)-oseltamivir, an antiviral reagent, has been accomplished by using two “one-pot” reaction sequences, with excellent overall yield (60 %) and only one required purification by column chromatography. The first one-pot reaction sequence consists of a diphenylprolinol silyl ether mediated asymmetric Michael reaction, a domino Michael reaction/Horner–Wadsworth–Emmons reaction combined with retro-aldol/Horner–Wadsworth–Emmons reaction and retro Michael reactions, a thiol Michael reaction, and a base-catalyzed isomerization. Six reactions can be successfully conducted in the second one-pot reaction sequence; these are deprotection of a tert-butyl ester and its conversion into an acyl chloride then an acyl azide, Curtius rearrangement, amide formation, reduction of a nitro group into an amine, and a retro Michael reaction of a thiol moiety. A column-free synthesis of (−)-oseltamivir has also been established.

Co-reporter:Hiroaki Gotoh, Hiroshi Ogino, Hayato Ishikawa, Yujiro Hayashi
Tetrahedron 2010 66(26) pp: 4894-4899
Publication Date(Web):
DOI:10.1016/j.tet.2010.03.010
Co-reporter:Hiroaki Gotoh and Yujiro Hayashi  
Chemical Communications 2009 (Issue 21) pp:3083-3085
Publication Date(Web):14 Apr 2009
DOI:10.1039/B902287B
Diphenylprolinol silyl ether was found to promote asymmetric, catalytic and direct α-benzoyloxylation of aldehydes with benzoyl peroxide to afford oxidized products in good yields with excellent enantioselectivity.
Co-reporter:Takahiko Itoh, Hayato Ishikawa and Yujiro Hayashi
Organic Letters 2009 Volume 11(Issue 17) pp:3854-3857
Publication Date(Web):August 5, 2009
DOI:10.1021/ol901432a
The asymmetric aldol reaction of isatin derivatives and acetaldehyde has been developed using 4-hydroxydiarylprolinol as a catalyst, affording the aldol products with high enantioselectivity, these products being key intermediates in the synthesis of 3-hydroxyindole alkaloids. Short syntheses of ent-convolutamydine E and CPC-1 and a half fragment of madindoline A and B have been accomplished.
Co-reporter:Hiroaki Gotoh, Daichi Okamura, Hayato Ishikawa and Yujiro Hayashi
Organic Letters 2009 Volume 11(Issue 18) pp:4056-4059
Publication Date(Web):August 26, 2009
DOI:10.1021/ol901483x
Diphenylprolinol silyl ether was found to be an effective organocatalyst in the enantioselective and direct Michael reaction of nitroethanol and α,β-unsaturated aldehydes, affording the 1-hydroxy-trans-3,4-disubstituted tetrahydropyrans after isomerization. The generated Michael addition products are useful synthetic intermediates, which can be converted into chiral tetrahydropyran with a quaternary stereocenter, 3-substituted cis- and trans-prolines, and α-amino acid derivatives.
Co-reporter:Yujiro Hayashi, Kuppusamy Sankar, Hayato Ishikawa, Yuriko Nozawa, Kazutoshi Mizoue, Hideaki Kakeya
Bioorganic & Medicinal Chemistry Letters 2009 Volume 19(Issue 14) pp:3863-3865
Publication Date(Web):15 July 2009
DOI:10.1016/j.bmcl.2009.03.154
The first asymmetric total synthesis of FD-838, a naturally occurring azaspirobicyclic product, has been accomplished allowing determination of its absolute stereochemistry.First asymmetric total synthesis of FD-838, a naturally occurring azaspirobicyclic product, has been accomplished allowing determination of its absolute stereochemistry.
Co-reporter:Uro&x161; Gro&x161;elj;Dieter Seebach;D.Michael Badine;W.Bernd Schweizer;AlbertK. Beck;Ingo Krossing;Petra Klose;Tadafumi Uchimaru
Helvetica Chimica Acta 2009 Volume 92( Issue 7) pp:1225-1259
Publication Date(Web):
DOI:10.1002/hlca.200900179

Abstract

Structures of the reactive intermediates (enamines and iminium ions) of organocatalysis with diarylprolinol derivatives have been determined. To this end, diarylprolinol methyl and silyl ethers, 1, and aldehydes, PhCH2CHO, tBuCH2CHO, PhCH=CHCHO, are condensed to the corresponding enamines, A and 3 (Scheme 2), and cinnamoylidene iminium salts, B and 4 (Scheme 3). These are isolated and fully characterized by melting/decomposition points, [α]D, elemental analysis, IR and NMR spectroscopy, and high-resolution mass spectrometry (HR-MS). Salts with BF4, PF6, SbF6, and the weakly coordinating Al[OC(CF3)3]4 anion were prepared. X-Ray crystal structures of an enamine and of six iminium salts have been obtained and are described herein (Figs. 2 and 4–8, and Tables 2 and 7) and in a previous preliminary communication (Helv. Chim. Acta2008, 91, 1999). According to the NMR spectra (in CDCl3, (D6)DMSO, (D6)acetone, or CD3OD; Table 1), the major isomers 4 of the iminium salts have (E)-configuration of the exocyclic NC(1′) bond, but there are up to 11% of the (Z)-isomer present in these solutions (Fig. 1). In all crystal structures, the iminium ions have (E)-configuration, and the conformation around the exocyclic N-CC-O bond is synclinal-exo (cf.C and L), with one of the phenyl groups over the pyrrolidine ring, and the RO group over the π-system. One of the meta-substituents (Me in 4b, CF3 in 4c and 4e) on a 3,5-disubstituted phenyl group is also located in the space above the π-system. DFT Calculations at various levels of theory (Tables 3–6) confirm that the experimentally determined structures (cf. Fig. 10) are by far (up to 8.3 kcal/mol) the most stable ones. Implications of the results with respect to the mechanism of organocatalysis by diarylprolinol derivatives are discussed.

Co-reporter:Yujiro Hayashi Dr.;Kazuki Obi;Yusuke Ohta;Daichi Okamura;Hayato Ishikawa Dr.
Chemistry – An Asian Journal 2009 Volume 4( Issue 2) pp:246-249
Publication Date(Web):
DOI:10.1002/asia.200800394
Co-reporter:Hayato Ishikawa Dr.;Takaki Suzuki Dr.
Angewandte Chemie 2009 Volume 121( Issue 7) pp:1330-1333
Publication Date(Web):
DOI:10.1002/ange.200804883
Co-reporter:Hayato Ishikawa Dr.;Takaki Suzuki Dr.
Angewandte Chemie International Edition 2009 Volume 48( Issue 7) pp:1304-1307
Publication Date(Web):
DOI:10.1002/anie.200804883
Co-reporter:Yujiro Hayashi Dr.;Tsubasa Okano;Takahiko Itoh;Tatsuya Urushima;Hayato Ishikawa Dr.;Tadafumi Uchimaru Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 47) pp:9053-9058
Publication Date(Web):
DOI:10.1002/anie.200802073
Co-reporter:Yujiro Hayashi Dr.;Hiroaki Gotoh;Ryouhei Masui ;Hayato Ishikawa Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 21) pp:4012-4015
Publication Date(Web):
DOI:10.1002/anie.200800662
Co-reporter:Yujiro Hayashi Dr.;Sampak Samanta Dr.;Hiroaki Gotoh ;Hayato Ishikawa Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 35) pp:6634-6637
Publication Date(Web):
DOI:10.1002/anie.200801408
Co-reporter:Yujiro Hayashi, Hirofumi Yamaguchi, Maya Toyoshima, Satoshi Nasu, Koji Ochiai and Mitsuru Shoji
Organometallics 2008 Volume 27(Issue 2) pp:163-165
Publication Date(Web):December 29, 2007
DOI:10.1021/om700961e
Remote stereocontrol is a difficult topic in current organic synthesis. We have developed a highly diastereoselective 1,4-asymmetric induction using a cobalt alkyne complex. This is the first example of using a cobalt alkyne complex for a stereoselective reaction via 1,4-chelation. Both anti and syn isomers were stereoselectively synthesized using two different methods.
Co-reporter:Yujiro Hayashi Dr.;Seiji Aratake;Yoshinaga Imai;Kazuhiro Hibino;Qi-Yin Chen;Junichiro Yamaguchi;Tadafumi Uchimaru Dr.
Chemistry – An Asian Journal 2008 Volume 3( Issue 2) pp:225-232
Publication Date(Web):
DOI:10.1002/asia.200700307

Abstract

trans-tert-Butyldimethylsiloxy-L-proline displays greater catalytic activity and affords higher enantioselectivity than the parent proline in the α-amination reaction of carbonyl compounds with azodicarboxylate. A quantum mechanical calculation reveals the structure of the transition state. In the presence of a catalytic amount of siloxyproline and water (3–9 equiv), α-amino carbonyl derivatives, which are important synthetic intermediates, are obtained in good yield and with excellent enantioselectivity.

Co-reporter:Yujiro Hayashi Dr.;Mitsuru Shoji Dr.;Hayato Ishikawa Dr.;Junichiro Yamaguchi;Tomohiro Tamura;Hiroki Imai;Yosuke Nishigaya;Kenichi Takabe;Hideaki Kakeya Dr.;Hiroyuki Osada Dr.
Angewandte Chemie 2008 Volume 120( Issue 35) pp:6759-6762
Publication Date(Web):
DOI:10.1002/ange.200802079
Co-reporter:Yujiro Hayashi Dr.;Sampak Samanta Dr.;Hiroaki Gotoh ;Hayato Ishikawa Dr.
Angewandte Chemie 2008 Volume 120( Issue 35) pp:6736-6739
Publication Date(Web):
DOI:10.1002/ange.200801408
Co-reporter:Yujiro Hayashi Dr.;Tsubasa Okano;Takahiko Itoh;Tatsuya Urushima;Hayato Ishikawa Dr.;Tadafumi Uchimaru Dr.
Angewandte Chemie 2008 Volume 120( Issue 47) pp:9193-9198
Publication Date(Web):
DOI:10.1002/ange.200802073
Co-reporter:Yujiro Hayashi Dr.;Hiroaki Gotoh;Ryouhei Masui ;Hayato Ishikawa Dr.
Angewandte Chemie 2008 Volume 120( Issue 21) pp:4076-4079
Publication Date(Web):
DOI:10.1002/ange.200800662
Co-reporter:Yujiro Hayashi Dr.;Mitsuru Shoji Dr.;Hayato Ishikawa Dr.;Junichiro Yamaguchi;Tomohiro Tamura;Hiroki Imai;Yosuke Nishigaya;Kenichi Takabe;Hideaki Kakeya Dr.;Hiroyuki Osada Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 35) pp:6657-6660
Publication Date(Web):
DOI:10.1002/anie.200802079
Co-reporter:Yujiro Hayashi Dr.;Takahiko Itoh;Seiji Aratake ;Hayato Ishikawa Dr.
Angewandte Chemie 2008 Volume 120( Issue 11) pp:2112-2114
Publication Date(Web):
DOI:10.1002/ange.200704870
Co-reporter:Yujiro Hayashi Dr.;Takahiko Itoh;Masahiro Ohkubo ;Hayato Ishikawa Dr.
Angewandte Chemie 2008 Volume 120( Issue 25) pp:4800-4802
Publication Date(Web):
DOI:10.1002/ange.200801130
Co-reporter:Yujiro Hayashi Dr.;Takahiko Itoh;Masahiro Ohkubo ;Hayato Ishikawa Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 25) pp:4722-4724
Publication Date(Web):
DOI:10.1002/anie.200801130
Co-reporter:Yujiro Hayashi Dr.;Takahiko Itoh;Seiji Aratake ;Hayato Ishikawa Dr.
Angewandte Chemie International Edition 2008 Volume 47( Issue 11) pp:2082-2084
Publication Date(Web):
DOI:10.1002/anie.200704870
Co-reporter:
Nature Protocols 2007 2(1) pp:
Publication Date(Web):2007-02-15
DOI:10.1038/nprot.2006.472
β-Amino carbonyl compounds are versatile synthetic intermediates, and their enantioselective synthesis is challenging. The catalytic, asymmetric Mannich reaction is among the most powerful methods for the construction of these chiral nitrogen-containing molecules (Fig. 1). Recently, several excellent results have been reported, some of which are based on catalytic asymmetric additions of a preformed enolate to aldimines1, 2. Unlike such Mannich reactions of preformed enolates, Shibasaki3, 4, 5, Jørgensen6 and Trost7 have developed direct, catalytic asymmetric Mannich reactions8, 9 using chiral organometallic catalysts. Recently, Terada10 reported direct Mannich reaction catalyzed by chiral Brønsted acid, and Jørgensen11, Schaus12 and Deng13 reported the amine-mediated direct, catalytic Mannich reaction of enolizable carbonyls such as cyano acetate, β-keto ester and malonate, respectively.In 2000, List, Lerner and Barbas discovered Pro-mediated intermolecular aldol reaction14. Inspired by Kobayashi's elegant three-component Mannich reaction1, List applied Pro catalysis to a three-component Mannich reaction and found that an asymmetric Mannich reaction between an aldehyde, p-anisidine and a ketone15, 16 proceeded in a highly enantioselective manner. In 2002, Barbas and co-workers reported a Mannich reaction of p-N-methoxyphenyl (N-PMP)–protected α-imino ethyl glyoxylate and an aldehyde or ketone, for the synthesis of chiral amino acid17, 18, 19, 20. Such Pro-mediated reactions are synthetically useful, producing Mannich products with excellent enantioselectivity. To expand the scope of these powerful asymmetric Mannich reactions, we have developed a direct and enantioselective, one-pot, three-component, cross-Mannich reaction of two different aldehydes: a Mannich reaction in which one aldehyde is employed as the Mannich donor and the other is utilized as a component of the Mannich acceptor to produce a synthetically versatile intermediate, a β-amino aldehyde (Fig. 2). Thus, our method is complementary to the methods published by List and Barbas.Nearly simultaneously with our publication21, 22, 23, similar papers appeared from Barbas'24 and Cordova's25 groups independently. As their protocols are slightly different from ours, we would like to recommend that readers look at their papers as well.In our synthetic approach, the reaction consists of two steps (Fig. 3). One is the formation of imine 6 by the reaction of aldehyde 1 and p-anisidine (3) in the presence of Pro (4). The second step is the addition reaction of the enamine 7 generated from the other aldehyde 2 and Pro (4) with the imine 6 prepared in the first step, to produce iminium ion 9, which is hydrolyzed to give β-amino aldehyde 5. As β-amino aldehyde 5 easily racemizes, isolation and characterization of the Mannich adduct is conducted for its γ-amino alcohol 10 after reduction with NaBH4.Among the potential side reactions is an aldol reaction. Pro is known to promote aldehyde–aldehyde aldol reaction at 4 °C26 and self-aldol reaction of nucleophilic aldehyde, and cross-aldol reaction of the Mannich product and nucleophilic aldehyde are potential side products (Fig. 4). In the Pro-mediated reactions, aldimine is more electrophilic than aldehyde, and this higher reactivity of aldimine is attributable to the carboxylic acid of Pro protonating the basic nitrogen atom of aldimine more efficiently than it protonates the oxygen atom of the aldehyde. To suppress the competitive aldol reaction, the second reaction step of the procedure is performed at −20 °C. In some cases, however, good results can be obtained even in a reaction conducted at 0 °C22. The balance of the nucleophilicity of enamine and the electrophilicity of the imine dictates the best reaction temperature (see ref. 22 for details).The applicability of our protocol is summarized in Table 1 and Figure 5 (ref. 21). Aromatic and heteroaromatic aldehydes can be successfully employed as starting materials, whereas aliphatic aldehydes such as cyclohexylcarbaldehyde give a complex mixture. For the nucleophilic aldehyde, not only propanal but also other aldehydes such as butanal and pentanal can be employed, although enantioselectivity decreases in the cases of these aldehydes.Among the synthetic applications of the β-amino aldehyde is our formal total synthesis of nikkomycin, in which three continuous chiral centers have been constructed in an enantioselective manner23. Christmann and co-workers also applied the reaction described here to the synthesis of chiral N-heterocycles27, 28.As an example of the present synthetic approach, we report in detail the procedure to obtain (2S, 3S)-3-(p-anisidino)-2-methyl-3-phenylpropan-1-ol, the γ-amino alcohol referred to in entry 1 of Table 1.Steps 1–3: 30 minSteps 4–5: 20.5 hSteps 6–14: 2 hStep 15: 3 hTotal estimated time: 26 h(2S, 3S)-3-(p-anisidino)-2-methyl-3-(p-nitrophenyl)-propan-1-ol (entry 2). Yield, 93%. [α]D −57° (c = 0.59 in CHCl3 at 26 °C). HPLC (Daicel Chiralpak AS-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 55.6 (major) and 70.9 (minor). 1H NMR (400 MHz, CDCl3) δ 0.86 (d, J = 7.1 Hz, 3H), 2.10-2.20 (m, 1H), 3.57 (d, J = 5.9 Hz, 2H), 3.62 (s, 3H), 4.61 (d, J = 3.9 Hz, 1H), 6.41 (d, J = 8.9 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 8.09 (d, J = 8.5 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 12.1, 41.9, 56.1, 60.9, 65.7, 115.2, 115.3, 124.0, 128.5, 141.4, 147.3, 151.1, 152.6. IR (neat): 3398, 2960, 1512, 1346, 1234, 1180, 1109, 1036, 820, 704 cm−1. HRMS (FAB): calcd. for C17H20N2O4 316.1423, found 316.1418.(2S, 3S)-3-(p-anisidino)-3-(p-bromophenyl)-2-methylpropan-1-ol (entry 3). Yield, 85%. [α]D −44° (c = 1.23 in CHCl3 at 19 °C). HPLC (Daicel Chiralpak AD-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 43.0 (major) and 33.8 (minor). 1H NMR (400 MHz, CDCl3) δ 0.89 (d, J = 7.1 Hz, 3H), 2.10-2.20 (m, 1H), 3.60 (d, J = 5.7 Hz, 2H), 3.67 (s, 3H), 4.46 (d, J = 4.1 Hz, 1H), 6.44 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 11.8, 41.2, 55.5, 60.2, 65.3, 114.6, 114.7, 114.8, 115.6, 120.3, 128.8, 131.1, 140.9, 141.0, 151.8. IR (neat): 3388, 2960, 2931, 2879, 2833, 1618, 1508, 1406, 1038, 820 cm−1. HRMS (FAB): calcd. for C17H20BrNO2 349.0677, found 349.0699.(2S, 3S)-3-(p-anisidino)-3-(p-chlorophenyl)-2-methylpropan-1-ol (entry 4). Yield, 91%. [α]D −47° (c = 0.57 in CHCl3 at 27 °C). HPLC (Daicel Chiralpak column AD-H hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 45.2 (major) and 34.7 (minor). 1H NMR (400 MHz, CDCl3) δ 0.89 (d, J = 7.1 Hz, 3H), 2.05-2.20 (m, 1H), 3.59-3.62 (m, 2H), 3.67 (s, 3H), 4.47 (d, 3.9 Hz, 1H), 6.44 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 7.17-7.34 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 12.4, 41.9, 56.2, 60.9, 66.2, 115.3, 115.4, 128.9, 129.0, 132.9, 141.0, 141.7, 152.6. IR (neat): 3321, 3178, 2954, 2871, 2832, 1514, 1491, 1250, 1030, 829 cm−1. HRMS (FAB): calcd for C17H20ClNO2 305.1183, found 305.1192.(2S, 3S)-3-(p-anisidino)-2-methyl-3-(naphth-2-yl)-propan-1-ol (entry 5). Yield, 59%. [α]D −65° (c = 0.35 in CHCl3 at 26 °C). HPLC (Daicel Chiralpak AS-H column hexane:i-PrOH 30:1 vol/vol, 0.5 ml min−1): tr = 43.1 (major) and 51.8 (minor). 1H NMR (400 MHz, CDCl3) δ 0.96 (d J = 7.1 Hz, 3H), 2.20-2.27 (m, 1H), 3.64 (s, 3H), 3.65-3.67 (m, 2H), 4.65 (d, J = 4.3 Hz, 1H), 6.52 (d, J = 8.9 Hz, 2H), 6.64 (d, J = 8.9 Hz, 2H), 7.37-7.50 (m, 3H), 7.70-7.90 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 12.0, 41.5, 55.6, 61.3, 66.0, 114.8, 115.1, 125.3, 125.5, 125.8, 125.9, 127.6, 127.8, 128.0, 132.7, 133.3, 139.5, 141.4, 152.1. IR (neat): 3300, 1510, 1458, 1294, 1275, 1234, 1038, 1025, 825, 817 cm−1. HRMS (FAB): calcd. for C21H23NO2 321.1729, found 321.1722.(2S, 3S)-3-(p-anisidino)-2-methyl-3-p-tolylpropan-1-ol (entry 6). Yield, 95%. [α]D −42° (c = 0.52 in CHCl3 at 18 °C). HPLC (Daicel Chiralpak AD-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 30.9 (major) and 26.6 (minor). 1H NMR (400 MHz, CDCl3) δ 0.91 (d, J = 7.0 Hz, 3H), 2.10-2.18 (m, 1H), 2.30 (s, 3H), 3.56-3.64 (m, 2H), 3.66 (s, 3H), 4.44 (d, J = 4,3 Hz, 1H), 4.63 (s, 1H), 6.49 (d, J = 8.8 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 7.09 (d, J = 5.4 Hz, 2H), 7.16 (t, J = 5.4 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 12.1, 20.9, 41.4, 55.5, 60.8, 65.8, 114.6, 114.8, 115.0, 126.9, 126.9, 128.9, 129.0, 136.1, 138.6, 141.5, 151.9. IR (neat): 3380, 2958, 1618, 1514, 1464, 1234, 1178, 1111, 1038, 820 cm−1. HRMS (FAB): calcd. for C18H23NO2 285.1729, found 285.1750.(2S, 3S)-3-(p-anisidino)-3-(2-furyl)-2-methylpropan-1-ol (entry 7). Yield, 87%. [α]D −100° (c = 0.81 in CHCl3 at 26 °C). HPLC (Daicel Chiralpak AD-H column hexane:i-PrOH 100:1 vol/vol, 1.0 ml min−1): tr = 36.2(major) and 40.7 (minor). 1H NMR (400 MHz, CDCl3) δ 0.98 (d, J = 7.1 Hz, 3H), 2.20-2.30 (m, 1H), 3.60-3.64 (m, 2H), 3.70 (s, 3H), 4.56 (d, J = 4.4 Hz, 1H), 6.11 (d, J = 3.2 Hz, 1H), 6.26 (dd, J = 3.2, 3.0 Hz, 1H), 6.59 (d, J = 8.9 Hz, 2H), 6.71 (d, J = 8.9 Hz, 2H), 7.32 (bs, 1H). 13C NMR (100 MHz, CDCl3) δ 12.4, 39.4, 55.3, 55.4, 65.2, 106.6, 109.8, 114.5, 115.2, 141.1, 141.3, 152.2, 155.0. IR (neat): 3384, 2960, 2833, 1514, 1506, 1236, 1028, 822, 769, 602 cm−1. HRMS (FAB): calcd. for C15H19NO3 261.1365, found 261.1345.(2S, 3S)-3-(p-anisidino)-3-(3-furyl)-2-methylpropan-1-ol (entry 8). Yield, 86%. [α]D −18.5° (c = 1.61 in CHCl3 at 23 °C). HPLC (Daicel Chiralpak AD-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 19.8 (major) and 18.1 (minor). 1H NMR (400 MHz, CDCl3) δ 0.92 (d, J = 7.1 Hz, 3H), 2.06-2.15 (m, 1H), 3.63 (d, J = 6.0, 2H), 3.65 (s, 3H), 4.43 (d, J = 3.7 Hz, 1H,), 6.31 (s, 1H), 6.54 (d, J = 8.9 Hz, 2H), 6.66 (d, J = 8.9 Hz, 2H), 7.21 (s, 1H), 7.34 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 12.3, 39.7, 54.3, 55.7, 66.0, 109.5, 114.7, 115.6, 139.9, 143.1, 152.5. IR (neat): 3384, 2960, 2833, 1514, 1506, 1236, 1028, 822, 769, 602 cm−1. HRMS (FAB): calcd. for C15H19NO3 261.1365, found 261.1345.(1S, 2S)-[3-(tert-butyldimethylsilyloxy)-2-methyl-1-pyridin-4-ylpropyl]-(p-methoxyphenyl)-amine (entry 9). Yield, 84%. [α]D −17° (c = 0.79 in CHCl3 at 18 °C). HPLC (Daicel Chiralpak AD-H column hexane:i-PrOH 100:1 vol/vol, 1.0 ml min−1): tr = 13.7 (major) and 17.6 (minor). 1H NMR (400 MHz, CDCl3) δ 0.03 (s, 3H), 0.04 (s, 3H), 0.84 (d, J = 7.1 Hz, 3H), 0.93 (s, 9H), 2.10-2.20 (m, 1H), 3.40-3.60 (m, 2H), 3.66 (s, 3H), 4.44 (d, J = 3.6 Hz, 1H), 6.35 (d, J = 8.6 Hz, 2H), 6.64 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 5.3 Hz, 2H), 8.50 (d, J = 5.3 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ −5.6, −5.5, 12.0, 18.2, 25.9, 41.1, 55.7, 60.7, 66.0, 114.2, 114.8, 122.7, 141.3, 149.7, 151.8, 151.9. IR (neat): 3375, 2954, 2856, 2929, 1597, 1514, 1252, 1115, 1084, 1041 cm−1. HRMS (FAB): calcd. for C22H34N2O2Si 386.2390, found 386.2360.(2S, 3S)-3-(p-anisidino)-3-(N-Boc-2-indolyl)-2-methylpropan-1-ol (entry 10). Yield, 76%. [α]D −33° (c = 0.70 in CHCl3 at 26 °C). HPLC (Daicel Chiralpak AS-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 34.4 (major) and 31.1 (minor). 1H NMR (400 MHz, CDCl3) δ 0.94 (d, J = 7.2 Hz, 3H,),1.71 (s, 9H), 2.20-2.30 (m, 1H), 3.67 (s, 3H), 3.72 (dd, J = 6.4, 10.7 Hz, 1H), 3.79 (dd, J = 4.1, 10.7 Hz, 1H), 5.55 (d, J = 2.9 Hz, 1H), 6.48 (s, 1H), 6.63 (d, J = 8.9 Hz, 2H), 6.70 (d, J = 8.9 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 10.4, 28.2, 39.2, 54.4, 55.7, 66.5, 84.7, 108.6, 114.8, 115.3, 115.6, 120.3, 122.8, 123.6, 128.9, 136.8, 141.0, 142.6, 150.8, 152.4. IR (neat): 3396, 2977, 2933, 1732, 1514, 1454, 1327, 1242, 1038, 750 cm−1. HRMS (FAB): calcd. for C24H30N2O4 410.2206, found 410.2210.(2S, 3S)-3-(p-anisidino)-3-(N-Boc-3-indolyl)-2-methylpropan-1-ol (entry 11). Yield, 69%. [α]D −18.5° (c = 1.00 in CHCl3 at 31 °C). HPLC (Daicel Chiralpak AD-H column hexane:i-PrOH 30:1 vol/vol, 1.2 ml min−1): tr = 34.0 (major) and 31.6 (minor). 1H NMR (400 MHz, CDCl3) δ 0.97 (d, J = 7.1 Hz, 3H), 1.64 (s, 9H), 2.30-2.42 (m, 1H), 3.68 (s, 3H), 3.72-3.80 (m, 2H), 4.86 (d, J = 3.7 Hz, 1H), 6.59 (d, J = 8.9, 2H), 6.69 (d, J = 8.9 Hz, 2H), 7.21 (t, J = 5.3 Hz, 1H), 7.31 (d, J = 7.4 Hz, 2H), 7.45 (s, 1H), 7.63 (d, J = 7.6 Hz, 1H), 8.10(s, 1H). 13C NMR (100 MHz, CDCl3) δ 12.0, 28.2, 39.6, 54.0, 55.7, 66.1, 83.7, 114.7, 115.2, 116.4, 119.3, 121.5, 122.5, 123.4, 124.4, 129.4, 141.5, 149.7, 152.3. IR (neat): 3400, 2976, 2933, 1732, 1512, 1452, 1371, 1246, 1155, 748 cm−1. HRMS (FAB): calcd. for C24H30N2O4 410.2206, found 410.2205.(2S, 3S)-3-(p-anisidino)-2-ethyl-3-phenylpropan-1-ol (entry 12). Yield, 85%. [α]D −33° (c = 0.70 in CHCl3 at 26 °C). HPLC (Daicel Chiralpak AS-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 34.4 (major) and 31.1 (minor). 1H NMR (400 MHz, CDCl3) δ 0.92 (t, J = 7.4 Hz, 3H), 1.28-1.44 (m, 2H), 1.87-1.92 (m, 1H), 3.66 (s, 3H), 3.67-3.70 (m, 2H), 4.55 (d, J = 4.2 Hz, 1H), 6.49 (d, J = 8.9 Hz, 2H), 6.66 (d, J = 8.9 Hz, 2H), 7.18-7.23 (m, 1H), 7.26-7.30 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 12.3, 19.1, 48.3, 55.7, 61.2, 63.6, 114.8, 115.2, 126.9, 127.2, 128.4, 141.4, 141.6, 152.3. IR (neat): 3313, 2968, 2837, 1512, 1483, 1442, 1363, 1244, 1180, 1031 cm−1. HRMS (FAB): calcd. for C18H23NO2 285.1729, found 285.1742.(2S, 3S)-3-(p-anisidino)-2-(n-propyl)-3-phenylpropan-1-ol (entry 13). Yield, 82%. [α]D −17° (c = 0.25 in CHCl3 at 18 °C). HPLC (Daicel Chiralpak AD-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 34.8 (major) and 29.1 (minor). 1H NMR (400 MHz, CDCl3) δ 0.83 (t, J = 7.0 Hz, 3H), 1.20-1.34 (m, 4H), 1.36-1.48 (m, 1H), 1.93-2.04 (m, 1H), 3.62-3.72 (m, 2H), 3.67 (s, 3H), 4.55 (d, J = 4.2 Hz, 1H), 6.50 (d, J = 8.9 Hz, 2H), 6.66 (d, J = 8.9 Hz, 2H), 7.16-7.22 (m, 1H), 7.27-7.32 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 14.6, 21.2, 28.7, 46.6, 56.1, 61.7, 64.5, 115.2, 115.6, 127.3, 127.5, 128.7, 141.7, 142.0, 152.6. IR (neat): 3313, 2927, 2360, 2343, 1512, 1450, 1244, 1038, 1020, 820, 702 cm−1. HRMS (FAB): calcd. for C19H25NO2 299.1885, found 299.1868.(2S, 3S)-3-(p-anisidino)-2-(n-butyl)-3-phenylpropan-1-ol (entry 14). Yield, 67%. [α]D −20.8° (c = 1.73 in CHCl3 at 23 °C). HPLC (Daicel Chiralpak AD-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 54.9 (major) and 39.0 (minor). 1H NMR (400 MHz, CDCl3) δ 0.82 (t, J = 7.1 Hz, 3H), 1.15-1.40 (m, 6H), 1.90-2.05 (m, 1H), 2.22 (bs, 1H), 3.67 (s, 3H), 4.39 (bs, 1H), 4.56 (J = 3.7 Hz, 1H), 6.50 (d, J = 8.9 Hz, 2H), 6.66 (d, J = 8.9 Hz, 2H), 7.15-7,25 (m, 1H), 7.29 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 14.4, 23.2, 26.1, 30.3, 46.8, 56.1, 61.7, 64.5, 115.1, 115.7, 127.3, 127.6, 128.8, 141.7, 141.9, 152.6. IR (neat): 3313, 3178, 2956, 2925, 2857, 1512, 1244, 1034, 822, 702 cm−1. HRMS (FAB): calcd. for C20H27NO2 313.2042, found 313.2019.(2S, 3S)-3-(p-anisidino)-2-(n-heptyl)-3-phenylpropan-1-ol (entry 15). Yield, 74%. [α]D −18.2° (c = 0.43 in CHCl3 at 23 °C). HPLC (Daicel Chiralcel OD-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 45.7 (major) and 41.5 (minor). 1H NMR (400 MHz, CDCl3) δ 0.85 (t, J = 7.1 Hz, 3H), 1.10-1.40 (m, 12H), 1.97 (m, 1H), 3.60-3.75 (m, 5H), 4.56 (d, J = 3.8 Hz, 1H), 6.50 (d, J = 8.9 Hz, 2H), 6.67 (d, J = 8.9 Hz, 2H), 7.15-7.25 (m, 1H), 7.29 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 14.5, 23.1, 26.4, 28.1, 29.6, 30.1, 32.2, 46.8, 56.1, 61.7, 64.5, 115.1, 115.7, 127.3, 127.6, 128.8, 141.7, 141.9, 152.6. IR (neat): 3313, 3153, 2923, 2856, 1513, 1471, 1284, 1234, 1041, 821.5 cm−1. HRMS (FAB): calcd. for C23H33NO2 355.2511, found 355.2530.(2S, 3S)-3-(p-anisidino)-2-(n-nonyl)-3-phenylpropan-1-ol (entry 16). Yield, 45%. [α]D −128.2° (c = 0.38 in CHCl3 at 23 °C). HPLC (Daicel Chiralcel OD-H column hexane:i-PrOH 30:1 vol/vol, 1.0 ml min−1): tr = 29.6 (major) and 27.2 (minor). 1H NMR (400 MHz, CDCl3) δ 0.91 (t, J = 7.1 Hz, 3H,), 1.15-1.1.45 (m, 16H), 1.95-2.08 (m, 1H), 3.67-3.75 (m, 5H), 4.61 (d, J = 3.2 Hz, 1H), 6.54 (d, J = 8.4 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 7.22-7.30 (m, 1H), 7.30-7.37 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 14.1, 22.6, 26.0, 27.7, 29.3, 29.4, 29.5, 29.7, 31.8, 46.3, 55.7, 61.2, 64.0, 114.7, 115.2, 126.8, 127.1, 128.3, 141.3, 141.5, 152.1. IR (neat): 3305, 3141, 2927, 2856, 1512, 1467, 1244, 1038, 820, 702 cm−1. HRMS (FAB): calcd. for C25H37NO2 383.2824, found 383.2816. Note: Supplementary information is available via the HTML version of this article.
Co-reporter:Yujiro Hayashi, Seiji Aratake, Takahiko Itoh, Tsubasa Okano, Tatsunobu Sumiya and Mitsuru Shoji  
Chemical Communications 2007 (Issue 9) pp:957-959
Publication Date(Web):08 Dec 2006
DOI:10.1039/B613262F
Dry and wet prolines were found to catalyze the direct aldol reactions of aldehyde–aldehyde and aldehyde–ketone, respectively, to afford aldols with excellent diastereo- and enantioselectivities, and an organic solvent-free reaction was realized in some cases.
Co-reporter:Seiji Aratake, Takahiko Itoh, Tsubasa Okano, Takahiro Usui, Mitsuru Shoji and Yujiro Hayashi  
Chemical Communications 2007 (Issue 24) pp:2524-2526
Publication Date(Web):20 Mar 2007
DOI:10.1039/B702559A
A small organic molecule, Pro–NH2, catalyzing the enantioselective aldol reaction “in water” not merely “in the presence of water” with good enantioselectivity has been discovered for the first time.
Co-reporter:Yujiro Hayashi;Mitsuru Shoji
European Journal of Organic Chemistry 2007 Volume 2007(Issue 23) pp:3783-3800
Publication Date(Web):21 JUN 2007
DOI:10.1002/ejoc.200700092

The asymmetric total synthesis of epoxyquinols A, B, and C and epoxytwinol A, and computational analysis of the key biomimetic oxidative dimerization procedure are described. In the first-generation synthesis, a HfCl4-mediated diastereoselective Diels–Alder reaction of furan with Corey's chiral auxiliary has been developed. In the second-generation synthesis, a chromatography-free preparation of an iodolactone using acryloyl chloride as the dienophile in the Diels–Alder reaction of furan and a lipase-mediated kinetic resolution of a cyclohexenol derivative have been developed. This second-generation synthesis is suitable for large-scale synthesis. A biomimetic cascade reaction involving oxidation, 6π-electrocyclization, and then Diels–Alder dimerization is the key reaction in the formation of the complex heptacyclic structure of epoxyquinols A, B, and C. Epoxytwinol A is synthesized by the cascade reaction involving oxidation, 6π-electrocyclization, and formal [4+4] cycloaddition reactions. A 2H-pyran, generated by oxidation/6π-electrocyclization, acts as a good diene, reacting with several dienophiles to afford polycyclic compounds in one step. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Co-reporter:Yujiro Hayashi  Dr.;Tsubasa Okano;Seiji Aratake;Damien Hazelard Dr.
Angewandte Chemie 2007 Volume 119(Issue 26) pp:
Publication Date(Web):22 MAY 2007
DOI:10.1002/ange.200700909

Drei zur Auswahl: Die Tandem-Michael-Henry-Reaktion eines Nitroalkens mit Pentan-1,5-dial (in situ erzeugt) führt unter Verwendung eines Diphenylprolinolsilylethers als Organokatalysator hoch diastereo- und enantioselektiv zu substituierten Nitrocyclohexancarbaldehyden (siehe Schema; TMS: Trimethylsilyl). Isomerisierung im Sauren oder Basischen überführt das Produkt diastereoselektiv in zwei Stereoisomere, ohne dabei die Enantioselektivität zu beeinträchtigen.

Co-reporter:Yujiro Hayashi  Dr.;Tsubasa Okano;Seiji Aratake;Damien Hazelard Dr.
Angewandte Chemie International Edition 2007 Volume 46(Issue 26) pp:
Publication Date(Web):22 MAY 2007
DOI:10.1002/anie.200700909

A choice of three: The tandem Michael/Henry reaction of a nitroalkene and pentane-1,5-dial (generated in situ) proceeded efficiently when diphenylprolinol silyl ether was used as an organocatalyst to afford substituted nitrocyclohexanecarbaldehydes with high diastereo- and enantioselectivity (see scheme; TMS: trimethylsilyl). Isomerization under basic or acidic conditions diastereoselectively converts the product into two stereoisomers, without compromising the enantioselectivity.

Co-reporter:Seiji Aratake;Takahiko Itoh;Tsubasa Okano;Norio Nagae;Tatsunobu Sumiya;Mitsuru Shoji Dr.  Dr.
Chemistry - A European Journal 2007 Volume 13(Issue 36) pp:
Publication Date(Web):25 SEP 2007
DOI:10.1002/chem.200700363

Proline-based organocatalysts have been developed for a highly enantioselective, direct aldol reaction of aldehydes and ketones in the presence of water. While several surfactant–proline combined catalysts have proved effective, proline derivatives with a hydrophobic moiety such as trans-siloxy-L-proline and cis-siloxy-D-proline, both of which are easily prepared from the same commercially available 4-hydroxy-L-proline, have been found to be the most effective organocatalysts examined in this study, affording the aldol product with excellent diastereo- and enantioselectivities, these two catalysts generating opposite enantiomers. Water affects the selectivity, and poor results are obtained under neat reaction conditions or in dry organic solvents. More than three equivalents of water are required for the best diastereo- and enantioselectivities, while three equivalents is the recommended amount from a synthetic point of view. The reaction proceeds in the organic phase, and also proceeds in the presence of a large amount of water. The large-scale preparation of aldols with the minimal use of an organic solvent, including in the purification step, is described.

Co-reporter:Yujiro Hayashi Dr.;Tatsunobu Sumiya;Junichi Takahashi;Hiroaki Gotoh;Tatsuya Urushima;Mitsuru Shoji Dr.
Angewandte Chemie 2006 Volume 118(Issue 6) pp:
Publication Date(Web):30 DEC 2005
DOI:10.1002/ange.200502488

Grüne Chemie: Aldolreaktionen, die in vielen Synthesen eine wichtige Rolle spielen, verlaufen auch in Wasser und ohne Metallkatalysator mit ausgezeichneten Enantioselektivitäten. Entscheidend für diese umweltverträgliche Synthese chiraler Verbindungen ist ein synthetischer Organokatalysator mit trans-Hydroxyprolin-Gerüst und einer Siloxygruppe (siehe Bild; TBDPS=tert-Butyldiphenylsilyl).

Co-reporter:Junichiro Yamaguchi, Maya Toyoshima, Mitsuru Shoji, Hideaki Kakeya, Hiroyuki Osada,Yujiro Hayashi
Angewandte Chemie International Edition 2006 45(5) pp:789-793
Publication Date(Web):
DOI:10.1002/anie.200502826
Co-reporter:Yujiro Hayashi Dr.;Seiji Aratake;Tsubasa Okano;Junichi Takahashi;Tatsunobu Sumiya;Mitsuru Shoji Dr.
Angewandte Chemie International Edition 2006 Volume 45(Issue 33) pp:
Publication Date(Web):20 JUL 2006
DOI:10.1002/anie.200601156

Why not combine the two? The asymmetric direct aldol reaction of two different aldehydes was catalyzed by a combined proline–surfactant organic catalyst in the presence of water. A stable emulsion was formed in the reaction mixture, and the aldols were obtained with excellent diastereo- and enantioselectivities (see scheme).

Co-reporter:Yujiro Hayashi Dr.;Masayoshi Matsuzawa;Junichiro Yamaguchi;Sayaka Yonehara;Yasunobu Matsumoto;Mitsuru Shoji Dr.;Daisuke Hashizume Dr.;Hiroyuki Koshino Dr.
Angewandte Chemie International Edition 2006 Volume 45(Issue 28) pp:
Publication Date(Web):3 JUL 2006
DOI:10.1002/anie.200601506

A clue to the origin of chirality? A solution of proline with high enantiomeric excess (85–99 % ee) was obtained from solid proline of only 10 % ee through novel dissolution and crystallization processes (see scheme). This observation may be an explanation for the origin of chirality on Earth.

Co-reporter:Yujiro Hayashi, Tatsunobu Sumiya, Junichi Takahashi, Hiroaki Gotoh, Tatsuya Urushima,Mitsuru Shoji
Angewandte Chemie International Edition 2006 45(6) pp:958-961
Publication Date(Web):
DOI:10.1002/anie.200502488
Co-reporter:Yujiro Hayashi Dr.
Angewandte Chemie International Edition 2006 Volume 45(Issue 48) pp:
Publication Date(Web):14 NOV 2006
DOI:10.1002/anie.200603378

What expression best conveys the recent examples of “aqueous” organocatalyzed aldol reactions? It is suggested that a reaction occurs “in water” if the participating reactants are dissolved homogeneously in water (or buffer), or “in the presence of water” if it proceeds in a concentrated organic phase with water present as a second phase that influences the reaction in the former.

Co-reporter:Hiroaki Gotoh;Ryouhei Masui;Hiroshi Ogino;Mitsuru Shoji Dr. Dr.
Angewandte Chemie International Edition 2006 Volume 45(Issue 41) pp:
Publication Date(Web):26 SEP 2006
DOI:10.1002/anie.200602925

The opposite result: A diphenylprolinol silyl ether promotes an intermolecular enantioselective ene reaction of α,β-enals with cyclopentadiene. This is the first example of cyclopentadiene acting as the ene component, and not the diene, with α,β-enals.

Co-reporter:Yujiro Hayashi Dr.;Masayoshi Matsuzawa;Junichiro Yamaguchi;Sayaka Yonehara;Yasunobu Matsumoto;Mitsuru Shoji Dr.;Daisuke Hashizume Dr.;Hiroyuki Koshino Dr.
Angewandte Chemie 2006 Volume 118(Issue 28) pp:
Publication Date(Web):3 JUL 2006
DOI:10.1002/ange.200601506

Ein Hinweis auf den Ursprung der Chiralität? Eine Lösung von Prolin mit hohem Enantiomerenüberschuss (85–99 % ee) wurde aus festem Prolin mit nur 10 % ee mithilfe eines neuartigen Lösungs- und Kristallisationsverfahrens erhalten (siehe Schema). Diese Beobachtung könnte den Ursprung der Chiralität auf der Erde erklären.

Co-reporter:Yujiro Hayashi Dr.
Angewandte Chemie 2006 Volume 118(Issue 48) pp:
Publication Date(Web):14 NOV 2006
DOI:10.1002/ange.200603378

Welche Beschreibung passt am besten auf die neuen „wässrigen“ organokatalysierten Aldolreaktionen? Es wird vorgeschlagen, von einer Reaktion „in Wasser“ zu sprechen, wenn die beteiligten Reaktanten homogen in Wasser (oder einem Puffer) gelöst sind, und von einer Reaktion „in Gegenwart von Wasser“, wenn sie in konzentrierter organischer Phase abläuft, wobei Wasser als eine zweite Phase die Reaktion in der organischen Phase beeinflusst.

Co-reporter:Hiroaki Gotoh;Ryouhei Masui;Hiroshi Ogino;Mitsuru Shoji Dr. Dr.
Angewandte Chemie 2006 Volume 118(Issue 41) pp:
Publication Date(Web):26 SEP 2006
DOI:10.1002/ange.200602925

Eine ganz neue Eigenschaft: Ein Diphenylprolinolsilylether erwies sich als Katalysator für die intermolekulare enantioselektive En-Reaktion zwischen α,β-Enalen und Cyclopentadien. Hier fungiert Cyclopentadien gegenüber einem α,β-Enal erstmals als En- und nicht als Dienkomponente. TBS=tert-Butyldimethylsilyl.

Co-reporter:Yujiro Hayashi Dr.;Seiji Aratake;Tsubasa Okano;Junichi Takahashi;Tatsunobu Sumiya;Mitsuru Shoji Dr.
Angewandte Chemie 2006 Volume 118(Issue 33) pp:
Publication Date(Web):20 JUL 2006
DOI:10.1002/ange.200601156

Warum nicht zwei zusammen? Die asymmetrische direkte Aldolreaktion zweier verschiedener Aldehyde wird von einem kombinierten Prolin-Tensid-System in Gegenwart von Wasser katalysiert. In der Reaktionsmischung bildet sich eine stabile Emulsion, und die Aldole wurden mit ausgezeichneten Diastereo- und Enantioselektivitäten erhalten (siehe Schema).

Co-reporter:Junichiro Yamaguchi;Maya Toyoshima;Mitsuru Shoji Dr.;Hideaki Kakeya Dr.;Hiroyuki Osada Dr. Dr.
Angewandte Chemie 2006 Volume 118(Issue 5) pp:
Publication Date(Web):20 DEC 2005
DOI:10.1002/ange.200502826

L-Prolin-vermittelte α-Aminoxylierung ist ein Schlüsselschritt in den enantio- und diastereoselektiven Totalsynthesen von Fumagillin, Ovalicin und verwandten Verbindungen (siehe Schema). Diese Verbindungen enthalten einen Cyclohexanring, zwei Epoxide sowie fünf oder sechs benachbarte stereogene Zentren und haben Anti-Angiogenese- oder immunsuppressive Eigenschaften.

Co-reporter:Yujiro Hayashi;Tatsuya Urushima;Mitsuru Shoji;Tadafumi Uchimaru;Isamu Shiina
Advanced Synthesis & Catalysis 2005 Volume 347(Issue 11-13) pp:
Publication Date(Web):19 OCT 2005
DOI:10.1002/adsc.200505190

In the proline-mediated Mannich and aldol reactions of propanal as a nucleophile, the aldimine prepared from benzaldehyde and p-anisidine is about 7 times more reactive than the corresponding aldehyde, benzaldehyde, as an electrophile. This higher reactivity of aldimine over aldehyde is attributed to the carboxylic acid of proline protonating the basic nitrogen atom of the aldimine more effectively than the oxygen atom of the aldehyde, an explanation which has been both experimentally and theoretically verified.

Co-reporter:Yujiro Hayashi Dr.;Hiroaki Gotoh;Takaaki Hayashi;Mitsuru Shoji Dr.
Angewandte Chemie International Edition 2005 Volume 44(Issue 27) pp:
Publication Date(Web):1 JUN 2005
DOI:10.1002/anie.200500599

The direct, catalytic, asymmetric Michael addition of aldehydes to nitroolefins in the presence of a chiral diphenylprolinol silyl ether organocatalyst is described (see scheme). The desired 1,4-addition products were obtained in nearly optically pure form in good yield with high syn diastereoselectivity. TMS=trimethylsilyl.

Co-reporter:Junichiro Yamaguchi;Hideaki Kakeya Dr.;Takao Uno;Mitsuru Shoji Dr.;Hiroyuki Osada Dr. Dr.
Angewandte Chemie International Edition 2005 Volume 44(Issue 20) pp:
Publication Date(Web):14 APR 2005
DOI:10.1002/anie.200500060

A biomimetic pathway to lucilactaene (1) from NG-391 has been developed which involves stereoselective reactions under very mild conditions. It was demonstrated that 1 racemizes rapidly, and the conditions under which racemization occurs were elucidated. Lucilactaene (1) isolated under neutral conditions is racemic, which suggests that either the natural product is racemized rapidly in the mycelia, or racemic 1 is biosynthesized.

Co-reporter:Junichiro Yamaguchi;Hideaki Kakeya Dr.;Takao Uno;Mitsuru Shoji Dr.;Hiroyuki Osada Dr. Dr.
Angewandte Chemie 2005 Volume 117(Issue 20) pp:
Publication Date(Web):14 APR 2005
DOI:10.1002/ange.200500060

Ein biomimetischer Weg führt unter sehr milden Bedingungen stereoselektiv von NG-391 zu Lucilactaen (1). Es wurde gezeigt, dass 1 rasch racemisiert, und die Bedingungen, unter denen Racemisierung eintritt, wurden aufgeklärt. Lucilactaen (1), das unter neutralen Bedingungen isoliert wird, ist racemisch, was dafür spricht, dass entweder der Naturstoff in den Mycelien rasch racemisiert oder bei der Biosynthese racemisches 1 entsteht.

Co-reporter:Yujiro Hayashi Dr.;Hiroaki Gotoh;Takaaki Hayashi;Mitsuru Shoji Dr.
Angewandte Chemie 2005 Volume 117(Issue 27) pp:
Publication Date(Web):1 JUN 2005
DOI:10.1002/ange.200500599

Die direkte, katalytische, asymmetrische Michael-Addition von Aldehyden an Nitroolefine in Gegenwart eines chiralen Diphenylprolinolsilylether-Organokatalysators (siehe Schema) liefert hoch syn-diastereoselektiv die gewünschten 1,4-Addukte in nahezu optisch reiner Form und guter Ausbeute. TMS=Trimethylsilyl.

Co-reporter:Yujiro Hayashi;Junichiro Yamaguchi;Kazuhiko Hibino;Tatsunobu Sumiya;Tatsuya Urushima;Mitsuru Shoji;Daisuke Hashizume;Hiroyuki Koshino
Advanced Synthesis & Catalysis 2004 Volume 346(Issue 12) pp:
Publication Date(Web):26 OCT 2004
DOI:10.1002/adsc.200404166

trans-4-tert-Butyldimethylsiloxy-L-proline displays a greater catalytic activity than the parent proline without compromising the enantioselectivity, which widens the substrate scope in the α-aminoxylation of carbonyl compounds, as well as O-nitroso-aldol/Michael, and Mannich reactions.

Co-reporter:Yujiro Hayashi;Tomohiro Tamura;Mitsuru Shoji
Advanced Synthesis & Catalysis 2004 Volume 346(Issue 9-10) pp:
Publication Date(Web):21 SEP 2004
DOI:10.1002/adsc.200404069

A chiral diamine, easily prepared from proline, is an effective, asymmetric organic catalyst for the Baylis–Hillman reaction of aldehydes and methyl vinyl ketone, affording adducts with enantioselectivities up to 75%.

Co-reporter:Yujiro Hayashi Dr.;Junichiro Yamaguchi;Tatsunobu Sumiya;Mitsuru Shoji Dr.
Angewandte Chemie International Edition 2004 Volume 43(Issue 9) pp:
Publication Date(Web):11 FEB 2004
DOI:10.1002/anie.200353085

Nitrosobenzene is the oxygen source in the direct catalytic enantioselective α-aminoxylation of ketones catalyzed by L-proline [Eq. (1)]. Versatile α-aminoxylated ketones are obtained in high yield and with excellent enantioselectivities.

Co-reporter:Yujiro Hayashi Dr.;Wataru Tsuboi;Itaru Ashimine;Tatsuya Urushima;Mitsuru Shoji Dr.;Ken Sakai Dr.
Angewandte Chemie International Edition 2003 Volume 42(Issue 31) pp:
Publication Date(Web):7 AUG 2003
DOI:10.1002/anie.200351813

A double-crossed reaction: The use of proline as an organocatalyst enables a one-pot, direct, cross-Mannich reaction to be performed between two different aldehydes and 4-methoxyaniline in a highly syn-diastereo- and enantioselective manner (see scheme).

Co-reporter:Yujiro Hayashi Dr.;Wataru Tsuboi;Itaru Ashimine;Tatsuya Urushima;Mitsuru Shoji Dr.;Ken Sakai Dr.
Angewandte Chemie 2003 Volume 115(Issue 31) pp:
Publication Date(Web):7 AUG 2003
DOI:10.1002/ange.200351813

Zweifach über Kreuz: Der Einsatz von Prolin als organischem Katalysator ermöglicht eine direkte gekreuzte Eintopf-Mannich-Reaktion zwischen zwei unterschiedlichen Aldehyden und 4-Methoxyanilin, die hochgradig syn-diastereo- und enantioselektiv abläuft.

Co-reporter:Yujiro Hayashi Dr.;Masahiko Nakamura;Shigehiro Nakao;Tae Inoue;Mitsuru Shoji Dr.
Angewandte Chemie 2002 Volume 114(Issue 21) pp:
Publication Date(Web):31 OCT 2002
DOI:10.1002/1521-3757(20021104)114:21<4253::AID-ANGE4253>3.0.CO;2-U

Schwieriges Substrat, aktiver Katalysator: Bei der Diels-Alder-Reaktion von Furan oder substituierten Furanen bildet sich das Cycloaddukt mit hoher Ausbeute und endo-Selektivität, wenn als Katalysator HfCl4 verwendet wird (siehe Schema). Wie am Beispiel der diastereoselektiven Diels-Alder-Reaktion eines chiralen Acrylats gezeigt wird, verläuft die Reaktion schon bei niedrigen Temperaturen unter kinetischer Kontrolle.

Co-reporter:Yujiro Hayashi Dr.;Masahiko Nakamura;Shigehiro Nakao;Tae Inoue;Mitsuru Shoji Dr.
Angewandte Chemie International Edition 2002 Volume 41(Issue 21) pp:
Publication Date(Web):31 OCT 2002
DOI:10.1002/1521-3773(20021104)41:21<4079::AID-ANIE4079>3.0.CO;2-N

High yields and high endo selectivity of the cycloadducts formed from the Diels–Alder reaction of furan or substituted furans occurs with an HfCl4 catalyst (see scheme). The use of the catalyst allows reactions to be performed at low temperature under kinetic control, as shown for the highly diastereoselective Diels–Alder reaction of a chiral acrylate.

Co-reporter:Yujiro Hayashi, Seiji Aratake, Takahiko Itoh, Tsubasa Okano, Tatsunobu Sumiya and Mitsuru Shoji
Chemical Communications 2007(Issue 9) pp:
Publication Date(Web):
DOI:10.1039/B613262F
Co-reporter:Hiroaki Gotoh and Yujiro Hayashi
Chemical Communications 2009(Issue 21) pp:NaN3085-3085
Publication Date(Web):2009/04/14
DOI:10.1039/B902287B
Diphenylprolinol silyl ether was found to promote asymmetric, catalytic and direct α-benzoyloxylation of aldehydes with benzoyl peroxide to afford oxidized products in good yields with excellent enantioselectivity.
Co-reporter:Yujiro Hayashi, Yusuke Yasui, Masahiro Kojima, Tsuyoshi Kawamura and Hayato Ishikawa
Chemical Communications 2012 - vol. 48(Issue 38) pp:NaN4572-4572
Publication Date(Web):2012/03/30
DOI:10.1039/C2CC31230A
The direct aldol reaction of an α-alkyl-α-oxo aldehyde was catalyzed by trifluoromethyl-substituted diarylprolinol 1 to afford a γ-oxo-β-hydroxy-α-substituted aldehyde in good yield with excellent anti-selectivity and excellent enantioselectivity.
Co-reporter:Seiji Aratake, Takahiko Itoh, Tsubasa Okano, Takahiro Usui, Mitsuru Shoji and Yujiro Hayashi
Chemical Communications 2007(Issue 24) pp:NaN2526-2526
Publication Date(Web):2007/03/20
DOI:10.1039/B702559A
A small organic molecule, Pro–NH2, catalyzing the enantioselective aldol reaction “in water” not merely “in the presence of water” with good enantioselectivity has been discovered for the first time.
2H-Pyran-2-acetic acid, tetrahydro-6-[(1E,3E,5S)-6-[(2R,3R)-3-[(1R,2S)-2-methoxy-1-methylbutyl]-2-methyl-2-oxiranyl]-1,5-dimethyl-1,3-hexadien-1-yl]-5-methyl-, (2R,5S,6S)-
Thiourea, N-[(1S,2S)-2-aminocyclohexyl]-N'-[(1R)-1-phenylethyl]-
3-(Triisopropylsilyl)propiolaldehyde
Cyclohexanone, 4-(4-nitrophenyl)-
5-Hexen-3-ol, 1-(phenylmethoxy)-, (3S)-
Silane, trimethyl-3-octen-1-ynyl-, (E)-
Hexanal,6-(phenylmethoxy)-
4-(((Benzyloxy)carbonyl)(methyl)amino)butanoic acid
Pentanal, 5-(phenylmethoxy)-
1-Hexanol, 6-(phenylmethoxy)-