Yong-hua Sun

Find an error

Name:
Organization: Institute of Hydrobiology
Department: Key Laboratory of Biomedical Polymers (The Ministry of Education), Department of Chemistry
Title:
Co-reporter:Dandan Zhang;Zhenxiang Li;Bingyu Yan;Jian-Feng Li
Science China Life Sciences 2016 Volume 59( Issue 8) pp:854-856
Publication Date(Web):2016 August
DOI:10.1007/s11427-015-4816-5
Co-reporter:Ding Ye;ZuoYan Zhu;YongHua Sun
Science China Life Sciences 2015 Volume 58( Issue 2) pp:170-177
Publication Date(Web):2015 February
DOI:10.1007/s11427-015-4806-7
Aquaculture is one of the fastest developing agricultural industries worldwide. One of the most important factors for sustainable aquaculture is the development of high performing culture strains. Genome manipulation offers a powerful method to achieve rapid and directional breeding in fish. We review the history of fish breeding methods based on classical genome manipulation, including polyploidy breeding and nuclear transfer. Then, we discuss the advances and applications of fish directional breeding based on transgenic technology and recently developed genome editing technologies. These methods offer increased efficiency, precision and predictability in genetic improvement over traditional methods.
Co-reporter:Shao-Chen Pang;Hou-Peng Wang;Zuo-Yan Zhu
Marine Biotechnology 2015 Volume 17( Issue 5) pp:593-603
Publication Date(Web):2015 October
DOI:10.1007/s10126-015-9641-0
The Gal4/upstream activating sequence (UAS) system is a powerful genetic tool for the temporal and spatial expression of target genes. In this study, the dynamic activity of the Gal4/UAS system was monitored in zebrafish throughout the entire lifespan and during germline transmission, using an optimized Gal4/UAS, KalTA4/4xUAS, which is driven by two muscle-specific regulatory sequences. We found that UAS-linked gene expression was transcriptionally amplified by Gal4/UAS during early developmental stages and that the amplification effects tended to weaken during later stages and even disappear in subsequent generations. In the F2 generation, the transcription of a UAS-linked enhanced green fluorescent protein (EGFP) reporter was transcriptionally silent from 16 days post-fertilization (dpf) into adulthood, yet offspring of this generation showed reactivation of the EGFP reporter in some strains. We further show that the transcriptional silencing and reactivation of UAS-driven EGFP correlated with the DNA methylation levels of the UAS regulatory sequences. Notably, asymmetric DNA methylation of the 4xUAS occurred in oocytes and sperm. Moreover, the paternal and maternal 4xUAS sequences underwent different DNA methylation dynamics after fertilization. Our study suggests that the Gal4/UAS system may represent a powerful tool for tracing the DNA methylation dynamics of paternal and maternal loci during zebrafish development and that UAS-specific DNA methylation should be seriously considered when the Gal4/UAS system is applied in zebrafish.
Co-reporter:Shao-Chen Pang;Hou-Peng Wang;Kuo-Yu Li;Zuo-Yan Zhu;Jing X. Kang
Marine Biotechnology 2014 Volume 16( Issue 5) pp:580-593
Publication Date(Web):2014 October
DOI:10.1007/s10126-014-9577-9
Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients for human health. However, vertebrates, including humans, have lost the abilities to synthesize EPA and DHA de novo, majorly due to the genetic absence of delta-12 desaturase and omega-3 desaturase genes. Fishes, especially those naturally growing marine fish, are major dietary source of EPA and DHA. Because of the severe decline of marine fishery and the decrease in n-3 LC-PUFA content of farmed fishes, it is highly necessary to develop alternative sources of n-3 LC-PUFA. In the present study, we utilized transgenic technology to generate n-3 LC-PUFA-rich fish by using zebrafish as an animal model. Firstly, fat1 was proved to function efficiently in fish culture cells, which showed an effective conversion of n-6 PUFA to n-3 PUFA with the n-6/n-3 ratio that decreased from 7.7 to 1.1. Secondly, expression of fat1 in transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.8- and 2.4-fold, respectively. Third, co-expression of fat2, a fish codon-optimized delta-12 desaturase gene, and fat1 in fish culture cell significantly promoted n-3 PUFA synthesis with the decreased n-6/n-3 ratio from 7.7 to 0.7. Finally, co-expression of fat1 and fat2 in double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.7- and 2.8-fold, respectively. Overall, we generated two types of transgenic zebrafish rich in endogenous n-3 LC-PUFA, fat1 transgenic zebrafish and fat1/fat2 double transgenic zebrafish. Our results demonstrate that application of transgenic technology of humanized fat1 and fat2 in farmed fishes can largely improve the n-3 LC-PUFA production.
Co-reporter:Chen-Wei Liu, Feng Xiong, Hui-Zhen Jia, Xu-Li Wang, Han Cheng, Yong-Hua Sun, Xian-Zheng Zhang, Ren-Xi Zhuo, and Jun Feng
Biomacromolecules 2013 Volume 14(Issue 2) pp:
Publication Date(Web):January 3, 2013
DOI:10.1021/bm3015297
In this paper, a facile strategy to develop graphene-based delivery nanosystems for effective drug loading and sustained drug release was proposed and validated. Specifically, biocompatible naphthalene-terminated PEG (NP) and anticancer drugs (curcumin or doxorubicin (DOX)) were simultaneously integrated onto oxidized graphene (GO), leading to self-assembled, nanosized complexes. It was found that the oxidation degree of GO had a significant impact on the drug-loading efficiency and the structural stability of nanosystems. Interestingly, the nanoassemblies resulted in more effective cellular entry of DOX in comparison with free DOX or DOX-loaded PEG-polyester micelles at equivalent DOX dose, as demonstrated by confocal microscopy studies. Moreover, the nanoassemblies not only exhibited a sustained drug release pattern without an initial burst release, but also significantly improved the stability of formulations which were resistant to drug leaking even in the presence of strong surfactants such as aromatic sodium benzenesulfonate (SBen) and aliphatic sodium dodecylsulfonate (SDS). In addition, the nanoassemblies without DOX loading showed negligible in vitro cytotoxicity, whereas DOX-loaded counterparts led to considerable toxicity against HeLa cells. The DOX-mediated cytotoxicity of the graphene-based formulation was around 20 folds lower than that of free DOX, most likely due to the slow DOX release from complexes. A zebrafish model was established to assess the in vivo safety profile of curcumin-loaded nanosystems. The results showed they were able to excrete from the zebrafish body rapidly and had nearly no influence on the zebrafish upgrowth. Those encouraging results may prompt the advance of graphene-based nanotherapeutics for biomedical applications.
Co-reporter:Feng Xiong;Zhi-Qiang Wei;Zuo-Yan Zhu
Marine Biotechnology 2013 Volume 15( Issue 5) pp:526-539
Publication Date(Web):2013 October
DOI:10.1007/s10126-013-9505-4
In zebrafish and other vertebrates, primordial germ cells (PGCs) are a population of embryonic cells that give rise to sperm and eggs in adults. Any type of genetically manipulated lines have to be originated from the germ cells of the manipulated founders, thus it is of great importance to establish an effective technology for highly specific PGC-targeted gene manipulation in vertebrates. In the present study, we used the Cre/loxP recombinase system and Gal4/UAS transcription system for induction and regulation of mRFP (monomer red fluorescent protein) gene expression to achieve highly efficient PGC-targeted gene expression in zebrafish. First, we established two transgenic activator lines, Tg(kop:cre) and Tg(kop:KalTA4), to express the Cre recombinases and the Gal4 activator proteins in PGCs. Second, we generated two transgenic effector lines, Tg(kop:loxP-SV40-loxP-mRFP) and Tg(UAS:mRFP), which intrinsically showed transcriptional silence of mRFP. When Tg(kop:cre) females were crossed with Tg(kop:loxP-SV40-loxP-mRFP) males, the loxP flanked SV40 transcriptional stop sequence was 100 % removed from the germ cells of the transgenic hybrids. This led to massive production of PGC-specific mRFP transgenic line, Tg(kop:loxP-mRFP), from an mRFP silent transgenic line, Tg(kop:loxP-SV40-loxP-mRFP). When Tg(kop:KalTA4) females were crossed with Tg(UAS:mRFP) males, the hybrid embryos showed PGC specifically expressed mRFP from shield stage till 25 days post-fertilization (pf), indicating the high sensitivity, high efficiency, and long-lasting effect of the Gal4/UAS system. Real-time PCR analysis showed that the transcriptional amplification efficiency of the Gal4/UAS system in PGCs can be about 300 times higher than in 1-day-pf embryos. More importantly, when the UAS:mRFP-nos1 construct was directly injected into the Tg(kop:KalTA4) embryos, it was possible to specifically label the PGCs with high sensitivity, efficiency, and persistence. Therefore, we have established two targeted gene expression platforms in zebrafish PGCs, which allows us to further manipulate the PGCs of zebrafish at different levels.
Co-reporter:Mu-Dan He, Feng-Hua Zhang, Hua-Lin Wang, Hou-Peng Wang, Zuo-Yan Zhu, Yong-Hua Sun
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis (October 2015) Volume 780() pp:86-96
Publication Date(Web):1 October 2015
DOI:10.1016/j.mrfmmm.2015.08.004
DNA double-strand break (DSB) repair is of considerable importance for genomic integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are considered as two major mechanistically distinct pathways involved in repairing DSBs. In recent years, another DSB repair pathway, namely, microhomology-mediated end joining (MMEJ), has received increasing attention. MMEJ is generally believed to utilize an alternative mechanism to repair DSBs when NHEJ and other mechanisms fail. In this study, we utilized zebrafish as an in vivo model to study DSB repair and demonstrated that efficient MMEJ repair occurred in the zebrafish genome when DSBs were induced using TALEN (transcription activator-like effector nuclease) or CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technologies. The wide existence of MMEJ repair events in zebrafish embryos was further demonstrated via the injection of several in vitro-designed exogenous MMEJ reporters. Interestingly, the inhibition of endogenous ligase 4 activity significantly increased MMEJ frequency, and the inhibition of ligase 3 activity severely decreased MMEJ activity. These results suggest that MMEJ in zebrafish is dependent on ligase 3 but independent of ligase 4. This study will enhance our understanding of the mechanisms of MMEJ in vivo and facilitate inducing desirable mutations via DSB-induced repair.
Co-reporter:Yong-Hua Sun
Science Bulletin (15 February 2017) Volume 62(Issue 3) pp:157-158
Publication Date(Web):15 February 2017
DOI:10.1016/j.scib.2017.01.032