Simon Ebbinghaus

Find an error

Name:
Organization: Ruhr-Universit?t Bochum , Germany
Department: Department of Physical Chemistry II
Title: (PhD)
Co-reporter:Tobias Vöpel, Kenny Bravo-Rodriguez, Sumit Mittal, Shivang Vachharajani, David Gnutt, Abhishek Sharma, Anne Steinhof, Oluwaseun Fatoba, Gisa Ellrichmann, Michael Nshanian, Christian Heid, Joseph A. Loo, Frank-Gerrit Klärner, Thomas Schrader, Gal Bitan, Erich E. Wanker, Simon Ebbinghaus, and Elsa Sanchez-Garcia
Journal of the American Chemical Society April 26, 2017 Volume 139(Issue 16) pp:5640-5640
Publication Date(Web):April 13, 2017
DOI:10.1021/jacs.6b11039
Huntington’s disease is a neurodegenerative disorder associated with the expansion of the polyglutamine tract in the exon-1 domain of the huntingtin protein (htte1). Above a threshold of 37 glutamine residues, htte1 starts to aggregate in a nucleation-dependent manner. A 17-residue N-terminal fragment of htte1 (N17) has been suggested to play a crucial role in modulating the aggregation propensity and toxicity of htte1. Here we identify N17 as a potential target for novel therapeutic intervention using the molecular tweezer CLR01. A combination of biochemical experiments and computer simulations shows that binding of CLR01 induces structural rearrangements within the htte1 monomer and inhibits htte1 aggregation, underpinning the key role of N17 in modulating htte1 toxicity.
Co-reporter:Steffen Büning;Abhishek Sharma;Shivang Vachharajani;Estella Newcombe;Angelique Ormsby;Mimi Gao;David Gnutt;Tobias Vöpel;Danny M. Hatters
Physical Chemistry Chemical Physics 2017 vol. 19(Issue 17) pp:10738-10747
Publication Date(Web):2017/05/03
DOI:10.1039/C6CP08167C
Huntington's disease is caused by a CAG trinucleotide expansion mutation in the Huntingtin gene that leads to an artificially long polyglutamine sequence in the Huntingtin protein. A key feature of the disease is the intracellular aggregation of the Huntingtin exon 1 protein (Httex1) into micrometer sized inclusion bodies. The aggregation process of Httex1 has been extensively studied in vitro, however, the crucial early events of nucleation and aggregation in the cell remain elusive. Here, we studied the conformational dynamics and self-association of Httex1 by in-cell experiments using laser-induced temperature jumps and analytical ultracentrifugation. Both short and long polyglutamine variants of Httex1 underwent an apparent temperature-induced conformational collapse. The temperature jumps generated a population of kinetically trapped species selectively for the longer polyglutamine variants of Httex1 proteins. Their occurrence correlated with the formation of inclusion bodies suggesting that such species trigger further self-association.
Co-reporter:David Gnutt;Oliver Brylski;Eugen Edengeiser;Martina Havenith
Molecular BioSystems (2005-Present) 2017 vol. 13(Issue 11) pp:2218-2221
Publication Date(Web):2017/10/24
DOI:10.1039/C7MB00432J
Changes of the extracellular milieu could affect cellular crowding. To prevent detrimental effects, cells use adaptation mechanisms to react to such conditions. Using fluorescent crowding sensors, we show that the initial response to osmotic stress is fast but imperfect, while the slow response renders cells more tolerant to stress, particularly in the presence of osmolytes.
Co-reporter:Mimi Gao;David Gnutt;Axel Orban;Dr. Bettina Appel;Francesco Righetti;Dr. Rol Winter;Dr. Franz Narberhaus;Dr. Sabine Müller;Dr. Simon Ebbinghaus
Angewandte Chemie International Edition 2016 Volume 55( Issue 9) pp:3224-3228
Publication Date(Web):
DOI:10.1002/anie.201510847

Abstract

Precise secondary and tertiary structure formation is critically important for the cellular functionality of ribonucleic acids (RNAs). RNA folding studies were mainly conducted in vitro, without the possibility of validating these experiments inside cells. Here, we directly resolve the folding stability of a hairpin-structured RNA inside live mammalian cells. We find that the stability inside the cell is comparable to that in dilute physiological buffer. On the contrary, the addition of in vitro artificial crowding agents, with the exception of high-molecular-weight PEG, leads to a destabilization of the hairpin structure through surface interactions and reduction in water activity. We further show that RNA stability is highly variable within cell populations as well as within subcellular regions of the cytosol and nucleus. We conclude that inside cells the RNA is subject to (localized) stabilizing and destabilizing effects that lead to an on average only marginal modulation compared to diluted buffer.

Co-reporter:Mimi Gao;David Gnutt;Axel Orban;Dr. Bettina Appel;Francesco Righetti;Dr. Rol Winter;Dr. Franz Narberhaus;Dr. Sabine Müller;Dr. Simon Ebbinghaus
Angewandte Chemie 2016 Volume 128( Issue 9) pp:3279-3283
Publication Date(Web):
DOI:10.1002/ange.201510847

Abstract

Eine korrekte und präzise Faltung der Sekundär- und Tertiärstruktur ist von entscheidender Bedeutung für die zelluläre Funktionalität von Ribonukleinsäuren (RNA). Faltungsstudien von RNA wurden allerdings überwiegend in vitro durchgeführt, ohne die Möglichkeit solche Experimente in vivo zu validieren. In dieser Arbeit konnten wir die Faltungsstabilität einer RNA-Haarnadel direkt in lebenden Säugerzellen auflösen. Die Ergebnisse zeigen, dass die Faltungsstabilität innerhalb der Zelle mit der in einer verdünnten physiologischen Pufferlösung vergleichbar ist. Die In-vitro-Verwendung von künstlichen Crowding-Reagentien, mit der Ausnahme vom hochmolekularen PEG, führt hingegen zu einer Destabilisierung der Haarnadel, die aus Oberflächenwechselwirkung und Verminderung der Wasseraktivität resultiert. Ferner ist die Faltungsstabilität der RNA äußerst variabel, sowohl innerhalb einer Zellpopulation als auch auf der subzellulären Ebene des Zellkerns und des Zytoplasmas. Demzufolge unterliegt die RNA im Inneren der Zelle (lokalisierten) stabilisierenden und destabilisierenden Effekten, die im Mittel und im Vergleich zu der verdünnten Pufferlösung nur eine geringfügige Modulation der Faltungsstabilität verursachen.

Co-reporter:Tobias Vöpel, Rebecca Scholz, Luca Davico, Magdalena Groß, Steffen Büning, Sabine Kareth, Eckhard Weidner and Simon Ebbinghaus  
Chemical Communications 2015 vol. 51(Issue 32) pp:6913-6916
Publication Date(Web):09 Feb 2015
DOI:10.1039/C4CC09745A
Micro composites are commonly characterized in bulk. Here we study the temperature triggered release of a bioactive compound from single isolated microcapsules. We monitor the release process in real-time using a novel thermal microscopy method combining laser-induced heating and fluorescence imaging.
Co-reporter:Mimi Gao, Kathrin Estel, Janine Seeliger, Ralf P. Friedrich, Susanne Dogan, Erich E. Wanker, Roland Winter and Simon Ebbinghaus  
Physical Chemistry Chemical Physics 2015 vol. 17(Issue 13) pp:8338-8348
Publication Date(Web):11 Nov 2014
DOI:10.1039/C4CP04682J
The cellular environment determines the structure and function of proteins. Marginal changes of the environment can severely affect the energy landscape of protein folding. However, despite the important role of chaperones on protein folding, less is known about chaperonal modulation of protein aggregation and fibrillation considering different classes of chaperones. We find that the pharmacological chaperone O4, the chemical chaperone proline as well as the protein chaperone serum amyloid P component (SAP) are inhibitors of the type 2 diabetes mellitus-related aggregation process of islet amyloid polypeptide (IAPP). By applying biophysical methods such as thioflavin T fluorescence spectroscopy, fluorescence anisotropy, total reflection Fourier-transform infrared spectroscopy, circular dichroism spectroscopy and atomic force microscopy we analyse and compare their inhibition mechanism. We demonstrate that the fibrillation reaction of human IAPP is strongly inhibited by formation of globular, amorphous assemblies by both, the pharmacological and the protein chaperones. We studied the inhibition mechanism under cell-like conditions by using the artificial crowding agents Ficoll 70 and sucrose. Under such conditions the suppressive effect of proline was decreased, whereas the pharmacological chaperone remains active.
Co-reporter:David Gnutt;Mimi Gao;Oliver Brylski;Dr. Matthias Heyden;Dr. Simon Ebbinghaus
Angewandte Chemie International Edition 2015 Volume 54( Issue 8) pp:2548-2551
Publication Date(Web):
DOI:10.1002/anie.201409847

Abstract

Biomolecules evolve and function in densely crowded and highly heterogeneous cellular environments. Such conditions are often mimicked in the test tube by the addition of artificial macromolecular crowding agents. Still, it is unclear if such cosolutes indeed reflect the physicochemical properties of the cellular environment as the in-cell crowding effect has not yet been quantified. We have developed a macromolecular crowding sensor based on a FRET-labeled polymer to probe the macromolecular crowding effect inside single living cells. Surprisingly, we find that excluded-volume effects, although observed in the presence of artificial crowding agents, do not lead to a compression of the sensor in the cell. The average conformation of the sensor is similar to that in aqueous buffer solution and cell lysate. However, the in-cell crowding effect is distributed heterogeneously and changes significantly upon cell stress. We present a tool to systematically study the in-cell crowding effect as a modulator of biomolecular reactions.

Co-reporter:David Gnutt;Mimi Gao;Oliver Brylski;Dr. Matthias Heyden;Dr. Simon Ebbinghaus
Angewandte Chemie International Edition 2015 Volume 54( Issue 8) pp:
Publication Date(Web):
DOI:10.1002/anie.201500265
Co-reporter:David Gnutt;Mimi Gao;Oliver Brylski;Dr. Matthias Heyden;Dr. Simon Ebbinghaus
Angewandte Chemie 2015 Volume 127( Issue 8) pp:2578-2581
Publication Date(Web):
DOI:10.1002/ange.201409847

Abstract

Biomoleküle entstehen und funktionieren in einer dicht gepackten und heterogenen zellulären Umgebung. Diese Bedingungen werden im Reagenzglas oft durch Zugabe künstlicher makromolekularer “Crowding”-Reagentien imitiert. Dennoch ist es unklar, ob solche Kosolventien tatsächlich die physikalischen und chemischen Eigenschaften der zellulären Umgebung widerspiegeln, da der zelluläre “Crowding”-Effekt bisher nicht quantifiziert wurde. Wir haben einen makromolekularen “Crowding”-Sensor, der auf einem FRET-markiertem Polymer basiert, entwickelt, um diese Effekte zu untersuchen. Die Ergebnisse zeigen, dass die Volumenausschlusseffekte zu keiner Kompression des Sensors in der Zelle führen. Die durchschnittliche Konformation des Sensors ist dabei ähnlich zu der im verdünnten Puffer sowie im Zell-Lysat. Ferner ist der zelluläre “Crowding”-Effekt heterogen verteilt und verändert sich signifikant während eines osmotischen Schocks. Mithilfe dieser Methode lässt sich der zelluläre “Crowding”-Effekt als Regulator von biomolekularen Reaktionen systematisch untersuchen.

Co-reporter:David Gnutt;Mimi Gao;Oliver Brylski;Dr. Matthias Heyden;Dr. Simon Ebbinghaus
Angewandte Chemie 2015 Volume 127( Issue 8) pp:
Publication Date(Web):
DOI:10.1002/ange.201500265
Co-reporter:Michael Senske ; Lisa Törk ; Benjamin Born ; Martina Havenith ; Christian Herrmann
Journal of the American Chemical Society 2014 Volume 136(Issue 25) pp:9036-9041
Publication Date(Web):June 3, 2014
DOI:10.1021/ja503205y
The interior of the cell is a densely crowded environment in which protein stability is affected differently than in dilute solution. Macromolecular crowding is commonly understood in terms of an entropic volume exclusion effect based on hardcore repulsions among the macromolecules. We studied the thermal unfolding of ubiquitin in the presence of different cosolutes (glucose, dextran, poly(ethylene glycol), KCl, urea). Our results show that for a correct dissection of the cosolute-induced changes of the free energy into its enthalpic and entropic contributions, the temperature dependence of the heat capacity change needs to be explicitly taken into account. In contrast to the prediction by the excluded volume theory, we observed an enthalpic stabilization and an entropic destabilization for glucose, dextran, and poly(ethylene glycol). The enthalpic stabilization mechanism induced by the macromolecular crowder dextran was similar to the enthalpic stabilization mechanism of its monomeric building block glucose. In the case of poly(ethylene glycol), entropy is dominating over enthalpy leading to an overall destabilization. We propose a new model to classify cosolute effects in terms of their enthalpic contributions to protein stability.
Co-reporter:Steffen Büning
BIOspektrum 2014 Volume 20( Issue 4) pp:383-385
Publication Date(Web):2014/06/01
DOI:10.1007/s12268-014-0452-z
Fast kinetics of biochemical reactions can be measured in vitro using relaxation experiments. Recently, temperature jump techniques have been developed that can also be applied for in-cell studies. The high spatio-temporal resolution of such experiments leads to new insights of how the cellular environment modifies reaction kinetics.
Co-reporter:Mimi Gao, Kathrin Estel, Janine Seeliger, Ralf P. Friedrich, Susanne Dogan, Erich E. Wanker, Roland Winter and Simon Ebbinghaus
Physical Chemistry Chemical Physics 2015 - vol. 17(Issue 13) pp:NaN8348-8348
Publication Date(Web):2014/11/11
DOI:10.1039/C4CP04682J
The cellular environment determines the structure and function of proteins. Marginal changes of the environment can severely affect the energy landscape of protein folding. However, despite the important role of chaperones on protein folding, less is known about chaperonal modulation of protein aggregation and fibrillation considering different classes of chaperones. We find that the pharmacological chaperone O4, the chemical chaperone proline as well as the protein chaperone serum amyloid P component (SAP) are inhibitors of the type 2 diabetes mellitus-related aggregation process of islet amyloid polypeptide (IAPP). By applying biophysical methods such as thioflavin T fluorescence spectroscopy, fluorescence anisotropy, total reflection Fourier-transform infrared spectroscopy, circular dichroism spectroscopy and atomic force microscopy we analyse and compare their inhibition mechanism. We demonstrate that the fibrillation reaction of human IAPP is strongly inhibited by formation of globular, amorphous assemblies by both, the pharmacological and the protein chaperones. We studied the inhibition mechanism under cell-like conditions by using the artificial crowding agents Ficoll 70 and sucrose. Under such conditions the suppressive effect of proline was decreased, whereas the pharmacological chaperone remains active.
Co-reporter:Michael Senske, Diana Constantinescu-Aruxandei, Martina Havenith, Christian Herrmann, Hermann Weingärtner and Simon Ebbinghaus
Physical Chemistry Chemical Physics 2016 - vol. 18(Issue 43) pp:NaN29708-29708
Publication Date(Web):2016/08/22
DOI:10.1039/C6CP05080H
The Hofmeister series is a universal homologous series to rank ion-specific effects on biomolecular properties such as protein stability or aggregation propensity. Although this ranking is widely used, outliers and exceptions are discussed controversially and a molecular level understanding is still lacking. Studying the thermal unfolding equilibrium of RNase A, we here show that this ambiguity arises from the oversimplified approach to determine the ion rankings. Instead of measuring salt effects on a single point of the protein folding stability curve (e.g. the melting point Tm), we here consider the salt induced shifts of the entire protein ‘stability curve’ (the temperature dependence of the unfolding free energy change, ΔGu(T)). We found multiple intersections of these curves, pinpointing a widely ignored fact: the Hofmeister cation and anion rankings are temperature dependent. We further developed a novel classification scheme of cosolute effects based on their thermodynamic fingerprints, reaching beyond salt effects to non-electrolytes.
Co-reporter:Tobias Vöpel, Rebecca Scholz, Luca Davico, Magdalena Groß, Steffen Büning, Sabine Kareth, Eckhard Weidner and Simon Ebbinghaus
Chemical Communications 2015 - vol. 51(Issue 32) pp:NaN6916-6916
Publication Date(Web):2015/02/09
DOI:10.1039/C4CC09745A
Micro composites are commonly characterized in bulk. Here we study the temperature triggered release of a bioactive compound from single isolated microcapsules. We monitor the release process in real-time using a novel thermal microscopy method combining laser-induced heating and fluorescence imaging.
Co-reporter:Steffen Büning, Abhishek Sharma, Shivang Vachharajani, Estella Newcombe, Angelique Ormsby, Mimi Gao, David Gnutt, Tobias Vöpel, Danny M. Hatters and Simon Ebbinghaus
Physical Chemistry Chemical Physics 2017 - vol. 19(Issue 17) pp:NaN10747-10747
Publication Date(Web):2017/01/09
DOI:10.1039/C6CP08167C
Huntington's disease is caused by a CAG trinucleotide expansion mutation in the Huntingtin gene that leads to an artificially long polyglutamine sequence in the Huntingtin protein. A key feature of the disease is the intracellular aggregation of the Huntingtin exon 1 protein (Httex1) into micrometer sized inclusion bodies. The aggregation process of Httex1 has been extensively studied in vitro, however, the crucial early events of nucleation and aggregation in the cell remain elusive. Here, we studied the conformational dynamics and self-association of Httex1 by in-cell experiments using laser-induced temperature jumps and analytical ultracentrifugation. Both short and long polyglutamine variants of Httex1 underwent an apparent temperature-induced conformational collapse. The temperature jumps generated a population of kinetically trapped species selectively for the longer polyglutamine variants of Httex1 proteins. Their occurrence correlated with the formation of inclusion bodies suggesting that such species trigger further self-association.
2-Hydroxy-N,N,N-trimethylethanaminium dihydrogenphosphate
L-Glutamine,homopolymer
a-D-Glucopyranoside, b-D-fructofuranosyl, homopolymer
Cytochrome C
Ribonuclease A
L-PHENYLALANINE