Co-reporter:Inaho Danjoh;Hiyori Sone;Ryoko Shirota
In Vitro Cellular & Developmental Biology - Animal 2012 Volume 48( Issue 7) pp:393-402
Publication Date(Web):2012 August
DOI:10.1007/s11626-012-9523-y
B lymphoblastoid cell lines (B-LCLs) are generally established from B lymphocytes by infection with Epstein-Barr virus (EBV). As their genomic structure is stable in culture, B-LCLs are a valuable resource for many types of analysis. The efficiency of establishing B-LCLs from freshly obtained blood samples from healthy individuals is almost 100 %; however, for blood samples stored inappropriately after collection or held in long-term storage as peripheral blood mononuclear cells (PBMCs) in liquid nitrogen, the efficiency of B-LCL establishment can be considerably lower. To date, we have established more than 550 B-LCLs from 685 PBMC samples that have been stored in liquid nitrogen for over 20 yr. The PBMCs were prepared from blood samples donated by individuals belonging to native minority ethnic groups in outlying regions of South America and elsewhere. The establishment of B-LCLs from this material is difficult, and failure results in the waste of valuable and rare samples. We sought to improve our success rate for establishing B-LCLs from these difficult and irreplaceable samples by a detailed examination of each step of the process. The analysis showed that two parameters were particularly critical to the success rate: the density of the PBMCs plated after EBV infection and the EBV titer. These observations shed light on cases where establishment of B-LCLs was hard due to the small number of PBMCs or damage to the cells.
Co-reporter:Takashi Hiroyama;Yukio Nakamura;Kenichi Miharada;Ryo Kurita
International Journal of Hematology 2011 Volume 93( Issue 1) pp:5-9
Publication Date(Web):2011/01/01
DOI:10.1007/s12185-010-0742-2
The supply of transfusable red blood cells (RBCs) is not sufficient in many countries. If immortalized erythroid progenitor cell lines able to produce transfusable RBCs in vitro were established, they would be valuable resources. However, such cell lines have not been established. We have developed a robust method to establish immortalized erythroid progenitor cell lines following the induction of hematopoietic differentiation of mouse embryonic stem (ES) cells and have established many immortalized erythroid progenitor cell lines so far. Although their precise characteristics varied among cell lines, each of these lines could differentiate in vitro into more mature erythroid cells, including enucleated RBCs. Following transplantation of these erythroid cells into mice suffering from acute anemia, the cells proliferated transiently, subsequently differentiated into functional RBCs, and significantly ameliorated the acute anemia. Considering the number of human ES cell lines that have been established so far and the number of induced pluripotent stem cell lines that will be established in future, the intensive testing of a number of these lines for establishing immortalized erythroid progenitor cell lines may allow the establishment of such cell lines similar to the mouse erythroid progenitor cell lines.
Co-reporter:Tsuyoshi Fujioka;Natsumi Shimizu;Kaori Yoshino;Hiroyuki Miyoshi
Human Cell 2010 Volume 23( Issue 3) pp:113-118
Publication Date(Web):2010 September
DOI:10.1111/j.1749-0774.2010.00091.x
Following the success in establishing human induced pluripotent stem (iPS) cells, research into various applications of the cells derived from human iPS cells has begun in earnest. The use of iPS cell-derived cells in clinical therapies is one of the most exciting of the possible applications. However, the risk of tumorigenicity is the biggest potential obstacle to use iPS cell derivatives in the clinic. It should be noted that the human cells used to generate iPS cell lines may have acquired genetic mutations and these might influence the tumorigenicity of the cells. In particular, the cells of older people have a higher risk of genetic mutations than those of younger people. Here, we show that iPS cells could be derived from short-term cultures of neonatal tissues. The established human iPS cells expressed various markers of undifferentiated cells and formed teratoma in immunodeficient mice. The human iPS cells derived from neonatal tissues may represent a clinical material possessing less tumorigenicity.
Co-reporter:Inaho Danjoh;Hiyori Sone;Nahomi Noda;Emi Iimura;Mariko Nagayoshi
Human Cell 2009 Volume 22( Issue 3) pp:81-84
Publication Date(Web):2009 September
DOI:10.1111/j.1749-0774.2009.00071.x
Immortalized cell lines, such as human cancer cell lines, are an indispensable experimental resource for many types of biological and medical research. However, unless the cell line has been authenticated prior to use, interpretation of experimental results may be problematic. The potential problems this may cause are illustrated by studies in which authentication of cell lines has not been carried out. For example, immortalized cell lines may unknowingly be infected with viruses that alter their characteristics. In fact, parainfluenza virus type 5 (PIV5) poses a threat to the use of immortalized cell lines in biological and medical research; PIV5 infection significantly alters cellular physiology associated with the response to interferon. If PIV5 infection is widespread in immortalized cell lines, then a very large number of published studies might have to be re-evaluated. Fortunately, analyses of a large number of immortalized cell lines indicate that PIV5 infection is not widespread.
Co-reporter:Tomoharu Tamagawa;Isamu Ishiwata;Kahei Sato
Human Cell 2009 Volume 22( Issue 3) pp:55-63
Publication Date(Web):2009 September
DOI:10.1111/j.1749-0774.2009.00069.x
There is growing evidence that the human amnion contains various types of stem cells. As amniotic tissue is readily available, it has the potential to be an important source of material for regenerative medicine. In the present study, we evaluated the potential of human amnion-derived fibroblast-like (HADFIL) cells to differentiate into pancreatic islet cells. Two HADFIL cell populations, derived from two different neonates, were analyzed. The expression of pancreatic cell-specific genes was examined before and after in vitro induction of cellular differentiation. We found that Pdx-1, Isl-1, Pax-4, and Pax-6 showed significantly increased expression following the induction of differentiation. In addition, immunostaining demonstrated that insulin, glucagon, and somatostatin were present in HADFIL cells following the induction of differentiation. These results indicate that HADFIL cell populations have the potential to differentiate into pancreatic islet cells. Although further studies are necessary to determine whether such in vitro-differentiated cells can function in vivo as pancreatic islet cells, these amniotic cell populations might be of value in therapeutic applications that require human pancreatic islet cells.
Co-reporter:Tomoharu Tamagawa;Isamu Ishiwata;Hiroshi Ishikawa
Human Cell 2008 Volume 21( Issue 2) pp:38-45
Publication Date(Web):2008 June
DOI:10.1111/j.1749-0774.2008.00049.x
There is growing evidence that the human amnion contains various types of stem cell. As amniotic tissue is readily available, it has the potential to be an important source of material for regenerative medicine. In this study, we evaluated the potential of human amnion-derived fibroblast-like (HADFIL) cells to differentiate into neural cells. Two HADFIL cell populations, derived from two different neonates, were analyzed. The expression of neural cell-specific genes was examined before and after in vitro induction of cellular differentiation. We found that neuron specific enolase, neurofilament-medium, β-tubulin isotype III, and glial fibrillary acidic protein (GFAP) showed significantly increased expression following the induction of differentiation. In addition, immunostaining demonstrated that neuron specific enolase, GFAP and myelin basic protein (MBP) were present in HADFIL cells following the induction of differentiation, although one of the HADFIL cell populations showed a lower expression of GFAP and MBP. These results indicate that HADFIL cell populations have the potential to differentiate into neural cells. Although further studies are necessary to determine whether such in vitro-differentiated cells can function in vivo as neural cells, these amniotic cell populations might be of value in therapeutic applications that require human neural cells.
Co-reporter:Tomoharu Tamagawa;Satoshi Oi;Isamu Ishiwata;Hiroshi Ishikawa
Human Cell 2007 Volume 20( Issue 3) pp:77-84
Publication Date(Web):2007 September
DOI:10.1111/j.1749-0774.2007.00032.x
Mesenchymal stem cells are believed to be involved in the formation of mesenchymal tissues, including bone, cartilage, muscle, tendon and adipose tissue. Interestingly, it has previously been reported that mesenchymal stem cells could also differentiate into endoderm-derived cells, such as hepatocytes. The amniotic membrane contains mesenchymal cells and is a readily available human tissue. Therefore, we investigated the potential of mesenchymal cells derived from human amniotic membrane (MC-HAM) to differentiate into hepatocytes. We analyzed the expression of hepatocyte-specific genes in MC-HAM before and after induction of differentiation into hepatocytes. We observed the expression of mRNAs encoding albumin, a-fetoprotein, cytokeratin 18 and α1-antitrypsin, but not those encoding glucose-6-phosphatase or ornithine transcarbamylase, prior to the induction of differentiation. However, immunocytochemistry revealed that albumin and α-fetoprotein were abundantly produced only afterthe induction of differentiation into hepatocytes. In addition, we observed the storage of glycogen, a characteristic feature of hepatocytes, using periodic acid-Schiff staining of MC-HAM induced to differentiate into hepatocytes. Overall, MC-HAM appear to be able to differentiate into cells possessing some characteristics of hepatocytes. Although further studies should be carried out to determine whether such in vitro-differentiated cells can function in vivo as hepatocytes. These cells may be useful in various applications that require human hepatocytes.