Co-reporter:Sangun Lee;Yanhai Wang;Sung Ouk Kim
Protein & Cell 2011 Volume 2( Issue 7) pp:564-572
Publication Date(Web):2011 July
DOI:10.1007/s13238-011-1078-2
The responses of macrophages to Bacillus anthracis infection are important for the survival of the host, since macrophages are required for the germination of B. anthracis spores in lymph nodes, and macrophage death exacerbates anthrax lethal toxin (LeTx)-induced organ collapse. To elucidate the mechanism of macrophage cell death induced by LeTx, we performed a genetic screen to search for genes associated with LeTx-induced macrophage cell death. RAW264.7 cells, a macrophage-like cell line sensitive to LeTx-induced death, were randomly mutated and LeTx-resistant mutant clones were selected. AMP deaminase 3 (AMPD3), an enzyme that converts AMP to IMP, was identified to be mutated in one of the resistant clones. The requirement of AMPD3 in LeTxinduced cell death of RAW 264.7 cells was confirmed by the restoration of LeTx sensitivity with ectopic reconstitution of AMPD3 expression. AMPD3 deficiency does not affect LeTx entering cells and the cleavage of mitogen-activated protein kinase kinase (MKK) by lethal factor inside cells, but does impair an unknown downstream event that is linked to cell death. Our data provides new information regarding LeTx-induced macrophage death and suggests that there is a key regulatory site downstream of or parallel to MKK cleavage that controls the cell death in LeTx-treated macrophages.
Co-reporter:Koh Ono;Xiaofei Wang;Sung Ouk Kim;Lucas C. Armstrong;Paul Bornstein
Protein & Cell 2010 Volume 1( Issue 2) pp:161-173
Publication Date(Web):2010 February
DOI:10.1007/s13238-010-0017-y
Metaxin, a mitochondrial outer membrane protein, is critical for TNF-induced cell death in L929 cells. Its deficiency, caused by retroviral insertion-mediated mutagenesis, renders L929 cells resistance to TNF killing. In this study, we further characterized metaxin deficiency-caused TNF resistance in parallel with Bcl-XL overexpression-mediated death resistance. We did not find obvious change in mitochondria membrane potential in metaxindeficient (Metmut) and Bcl-XL-overexpressing cells, but we did find an increase in the release rate of the mitochondrial membrane potential probe rhodamine 123 (Rh123) that was preloaded into mitochondria. In addition, overexpression of a function-interfering mutant of metaxin (MetaΔTM/C) or Bcl-XL in MCF-7.3.28 cells also resulted in an acquired resistance to TNF killing and a faster rate of Rh123 release, indicating a close correlation between TNF resistance and higher rates of the dye release from the mitochondria. The release of Rh123 can be controlled by the mitochondrial membrane permeability transition (PT) pore, as targeting an inner membrane component of the PT pore by cyclosporin A (CsA) inhibited Rh123 release. However, metaxin deficiency and Bcl-XL overexpression apparently affect Rh123 release from a site(s) different from that of CsA, as CsA can overcome their effect. Though both metaxin and Bcl-XL appear to function on the outer mitochondrial membrane, they do not interact with each other. They may use different mechanisms to increase the permeability of Rh123, since previous studies have suggested that metaxin may influence certain outer membrane porins while Bcl-XL may form pores on the outer membrane. The alteration of the mitochondrial outer membrane properties by metaxin deficiency and Bcl-XL overespression, as indicated by a quicker Rh123 release, may be helpful in maintaining mitochondrial integrity.
Co-reporter:Koh Ono;Xiaofei Wang;Sung Ouk Kim;Lucas C. Armstrong;Paul Bornstein
Protein & Cell 2010 Volume 1( Issue 12) pp:1128
Publication Date(Web):2010 December
DOI:10.1007/s13238-010-0145-4
Co-reporter:Chia-Cheng Wu;Xiaohua Wu;Peiqing Sun
Protein & Cell 2010 Volume 1( Issue 6) pp:573-583
Publication Date(Web):2010 June
DOI:10.1007/s13238-010-0075-1
In eukaryotic cells, DNA damage triggers activation of checkpoint signaling pathways that coordinate cell cycle arrest and repair of damaged DNA. These DNA damage responses serve to maintain genome stability and prevent accumulation of genetic mutations and development of cancer. The p38 MAPK was previously implicated in cellular responses to several types of DNA damage. However, the role of each of the four p38 isoforms and the mechanism for their involvement in DNA damage responses remained poorly understood. In this study, we demonstrate that p38γ, but not the other p38 isoforms, contributes to the survival of UV-treated cells. Deletion of p38γ sensitizes cells to UV exposure, accompanied by prolonged S phase cell cycle arrest and increased rate of apoptosis. Further investigation reveal that p38γ is essential for the optimal activation of the checkpoint signaling caused by UV, and for the efficient repair of UV-induced DNA damage. These findings have established a novel role of p38γ in UV-induced DNA damage responses, and suggested that p38γ contributes to the ability of cells to cope with UV exposure by regulating the checkpoint signaling pathways and the repair of damaged DNA.
Co-reporter:Tyler ZARUBIN and Jiahuai HAN
Cell Research 2005 15(1) pp:11-18
Publication Date(Web):
DOI:10.1038/sj.cr.7290257
The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.
Co-reporter:Johann Mols, Arjen van den Berg, Motoyuki Otsuka, Min Zheng, Jianming Chen, Jiahuai Han
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms (November 2008) Volume 1779(Issue 11) pp:
Publication Date(Web):November 2008
DOI:10.1016/j.bbagrm.2008.03.007
The control of mRNA stability is a complex biological process that involves numerous factors, including microRNA (miRNA) and short interfering RNA (siRNA). Here, we show that short interfering RNA (siRNA) and microRNA share some similarities in their response to cellular stress. miR16 expedites the degradation of mRNAs containing AU-rich elements (ARE) in their 3′ untranslated region (UTR). si20 is an siRNA designed to target a non-ARE sequence in the TNF 3′UTR. We found that both si20 and miR16/ARE-mediated degradation of mRNAs can be inhibited by stimulating cells with different stresses. By analyzing TNF-α stimulation-mediated stabilization of si20- and miR16-targeted mRNA, we show that this stabilization is not caused by modifying si20 and miR16 loading into Ago2 complexes, or mRNA targeting to Ago2, but by inhibiting mRNA deadenylation. This is the first report showing that a specific siRNA-mediated mRNA degradation can be regulated by inflammatory stimuli, and that deadenylation is involved in this siRNA-mediated mRNA decay.
Co-reporter:Arjen van den Berg, Johann Mols, Jiahuai Han
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms (November 2008) Volume 1779(Issue 11) pp:
Publication Date(Web):November 2008
DOI:10.1016/j.bbagrm.2008.07.005
Small RNA molecules have been known and utilized to suppress gene expression for more than a decade. The discovery that these small RNA molecules are endogenously expressed in many organisms and have a critical role in controlling gene expression has led to the arising of a whole new field of research. Termed small interfering RNA (siRNA) or microRNA (miRNA) these ∼ 22 nt RNA molecules have the capability to suppress gene expression through various mechanisms once they are incorporated in the multi-protein RNA-Induced Silencing Complex (RISC) and interact with their target mRNA. This review introduces siRNAs and microRNAs in a historical perspective and focuses on the key molecules in RISC, structural properties and mechanisms underlying the process of small RNA regulated post-transcriptional suppression of gene expression.
Co-reporter:Motoyuki Otsuka, Qing Jing, Philippe Georgel, Liguo New, ... Jiahuai Han
Immunity (27 July 2007) Volume 27(Issue 1) pp:123-134
Publication Date(Web):27 July 2007
DOI:10.1016/j.immuni.2007.05.014
Dicer is essential for plant, Caenorhabditis elegans, and Drosophila antiviral responses because of its role in generating small interfering RNA (siRNA) from viral genomes. We show that because of impaired miRNA production, mice with a variant Dicer1 allele (Dicer1d/d) were more susceptible to vesicular stomatitis virus (VSV) infection. We did not detect VSV genome-derived siRNA in wild-type cells or any alteration of interferon-mediated antiviral responses by Dicer1 deficiency. Rather, we found that host miR24 and miR93 could target viral large protein (L protein) and phosphoprotein (P protein) genes, and a lack of miR24 and miR93 was responsible for increased VSV replication in Dicer1d/d cells. Our data suggest that host miRNA can play a role in host interactions with viruses.