UVR8 is the only known plant photoreceptor that mediates light responses to UV-B (280–315 nm) of the solar spectrum. UVR8 perceives a UV-B signal via light-induced dimer dissociation, which triggers a wide range of cellular responses involved in photomorphogenesis and photoprotection. Two recent crystal structures of Arabidopsis thaliana UVR8 (AtUVR8) have revealed unusual clustering of UV-B-absorbing Trp pigments at the dimer interface and provided a structural framework for further mechanistic investigation. This review summarizes recent advances in spectroscopic, computational and crystallographic studies on UVR8 that are directed toward full understanding of UV-B perception at the molecular level.
Two-component signal transduction is the major signaling mechanism that enables bacteria to survive and thrive in complex environmental conditions. The photosynthetic bacterium R. palustris employs two tandem bacteriophytochromes, RpBphP2 and RpBphP3, to perceive red-light signals that regulate the synthesis of light-harvesting complexes under low-light conditions. Both RpBphP2 and RpBphP3 are photosensory histidine kinases coupled to the same response regulator RPA3017. Together, they constitute a two-component system that converts a red-light signal into a biological signal. In this work, the crystal structure of RPA3017 in the unphosphorylated form at 1.9 Å resolution is presented. This structure reveals a tightly associated dimer arrangement that is conserved among phytochrome-related response regulators. The conserved active-site architecture provides structural insight into the phosphotransfer reaction between RpBphP2/RpBphP3 and RPA3017. Based on structural comparisons and homology modeling, how specific recognition between RpBphP2/RpBphP3 and RPA3017 is achieved at the molecular level is further explored.