QingHong Shi

Find an error

Name: 史清洪; QingHong Shi
Organization: Tianjin University
Department:
Title:

TOPICS

Co-reporter:Jin-Shan Bai;Shu Bai;Qing-Hong Shi;Yan Sun
Journal of Separation Science 2014 Volume 37( Issue 12) pp:1386-1395
Publication Date(Web):
DOI:10.1002/jssc.201400092

Efficient loading on a chromatographic column is the dilemma of the process development faced by engineers in plasmid DNA purification. In this research, novel arginine-affinity chromatographic beads were prepared to investigate the effect of spacer arm and ligand density to their chromatographic performance for the purification of plasmid. The result indicated that dynamic binding capacity for plasmid increased with an increasing ligand density and carbon number of spacer arm, and the highest binding capacity for plasmid of 6.32 mg/mL bead was observed in the column of arginine bead with a ligand density of 47 mmol/L and 10-atom carbon spacer. Furthermore, this arginine bead exhibited better selectivity to supercoiled (sc) plasmid. The evidence of a linear gradient elution suggested further that the binding of plasmid on arginine beads was driven by electrostatic interaction and hydrogen bonding. Hence, sc plasmid could successfully be purified from clarified lysate by two-stepwise elution of salt concentration. By the refinement of the elution scheme and loading volume of clarified lysate, the column of arginine bead with a ligand density of 47 mmol/L exhibited the highest recovery yield and a much higher productivity among arginine-affinity columns. Therefore, reshaped arginine beads provided more feasible and practical application in the preparation of sc plasmid from clarified lysate.

Co-reporter:Dong-Sheng Chai;Yan Sun;Xiao-Ning Wang;Qing-Hong Shi
Journal of Separation Science 2014 Volume 37( Issue 23) pp:3461-3472
Publication Date(Web):
DOI:10.1002/jssc.201400554

Efficient loading of immunoglobulin G in mixed-mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed-mode ligand, 4-(1H-imidazol-1-yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15–64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification.

Co-reporter:Qing-Hong Shi;Guo-Dong Jia;Liang Xu;Yan Sun
Journal of Separation Science 2013 Volume 36( Issue 18) pp:3075-3085
Publication Date(Web):
DOI:10.1002/jssc.201300297

In this study, a novel column design with a round cross-section was proposed to be suitable for a transverse electric field (EF). Additionally, two beads for entropic interaction chromatography (EIC) were prepared by grafting glycidyl methacrylate onto Toyopearl HW-65F (T65F) beads. Solute partitioning was then investigated to elucidate the role of graft polymerization with and without an EF. In a T65F column, solute partitioning was attributed to the distinct pore structure in the beads and was governed by pore flow. Under EF, partition coefficients (Kp) for solutes decreased with increasing EF strength. In the two EIC columns, a decrease of Kp was also observed without an EF while the fractionation windows were extended. It was more pronounced in the EIC column with a high grafting density (T65F-H). This was explained by the decrease in the effective pore size of solutes caused by the steric hindrance of polymer chains. Under an EF, the solutes showed different partitioning behaviours in the T65F-H column. With increasing EF strength, Kp for vitamin B12 and myoglobin was decreased. In contrast, Kp for large solutes increased as a result of concentration polarization on the bead surface. Both behaviors were related to the modulation of graft polymerization to residual charge on the matrix and the pore size of the solutes.

Co-reporter:Juan Liang;Georg Fieg;Qing-Hong Shi;Yan Sun
Journal of Separation Science 2012 Volume 35( Issue 17) pp:2162-2173
Publication Date(Web):
DOI:10.1002/jssc.201200101

Simultaneous and sequential adsorption equilibria of single and binary adsorption of bovine serum albumin and bovine hemoglobin on Q Sepharose FF were investigated in different buffer constituents and initial conditions. The results in simultaneous adsorption showed that both proteins underwent competitive adsorption onto the adsorbent following greatly by protein–surface interaction. Preferentially adsorbed albumin complied with the universal rule of ion-exchange adsorption whereas buffer had no marked influence on hemoglobin adsorption. Moreover, an increase in initial ratios of proteins was benefit to a growth of adsorption density. In sequential adsorption, hemoglobin had the same adsorption densities as single-component adsorption. It was attributed to the displacement of preadsorbed albumin and multiple layer adsorption of hemoglobin. Three isothermal models (i.e. extended Langmuir, steric mass-action, and statistical thermodynamic (ST) models) were introduced to describe the ion-exchange adsorption of albumin and hemoglobin mixtures. The results suggested that extended Langmuir model gave the lowest deviation in describing preferential adsorption of albumin at a given salt concentration while steric mass-action model could very well describe the salt effect in albumin adsorption. For weaker adsorbed hemoglobin, ST model was the preferred choice. In concert with breakthrough data, the research further revealed the complexity in ion-exchange adsorption of proteins.

Co-reporter:Lin-Ling Yu;Qing-Hong Shi;Yan Sun
Journal of Separation Science 2011 Volume 34( Issue 21) pp:2950-2959
Publication Date(Web):
DOI:10.1002/jssc.201100394

Abstract

In the current research, a series of dextran-grafted adsorbents were prepared using sulfopropyl and 4-(1H-imidazol-1-yl) aniline as chromatographic ligands for ion-exchange (IEC) and mixed-mode chromatography (MMC) to respectively investigate the influence of dextran layer on adsorption of γ-globulin. Experimental evidences of static adsorption on dextran-grafted IEC adsorbents showed that adsorption capacity of γ-globulin increased with dextran content. It could be attributed to the multilayer adsorption of charged protein in dextran layer and thus further induced a significant electrical potential gradient at the boundary of adsorbed area and its proximity, improving mass transfer in combination with concentration gradient. In contrast to IEC adsorbents, adsorption capacity and effective diffusivity of dextran-grafted MMC adsorbents did not change obviously with dextran grafting. It was considered that hydrophobic ligands immobilized onto dextran-grafted MMC adsorbents were stuck together at pH 8.0, resulting in the collapse of dextran layer. In concert with measured effective porosity for γ-globulin at pH 4.0, it was confirmed that dextran layer in MMC adsorbent was more complicated and influenced significantly by buffer pH. It was also manifested by protein adsorption at different pHs. Thus, it revealed the complexity in intraparticle mass transfer of the protein in dextran-grafted MMC adsorbent.

Co-reporter:Hong-Yan Wang, Yan Sun, Su-Ling Zhang, Jian Luo, Qing-Hong Shi
Biochemical Engineering Journal (15 September 2016) Volume 113() pp:19-29
Publication Date(Web):15 September 2016
DOI:10.1016/j.bej.2016.05.006
•We synthesized a novel poly(SPM)-grafted cation-exchanger by ATRP.•The gels provided three-dimensional ligand arrangement by virtue of ATRP.•Poly(SPM)-grafted cation-exchanger had a higher ionic capacity than the commercial gels.•The gels show high binding capacity and great salt tolerance.•The result demonstrates the mechanism of protein adsorption in the cation-exchangers.This work reports the synthesis of novel cation-exchanger with controllable charge density and polymer chain length of poly(3-sulfopropyl methacrylate) (poly(SPM)) grafted via atom transfer radical polymerization onto Sepharose FF matrix. Polymer grafting provided a three-dimensional regular arrangement of the ligand and increased ionic capacity of the poly(SPM)-grafted cation-exchangers. The result showed that adsorption capacity for lysozyme enhanced greatly in poly(SPM)-grafted cation-exchangers whereas adsorption capacity for γ-globulin decreased dramatically. It can be attributed to the consequence of the competition between electrostatic interaction and repulsive excluded volume interaction of grafted polymer and protein. For lysozyme, protein adsorption on poly(SPM)-grafted cation exchangers was driven dominantly by electrostatic interaction. By constrast, the repulsive excluded volume interaction between grafted polymer and protein was remarkable in adsorption of γ-globulin on poly(SPM)-grafted cation exchangers. Moreover, the poly(SPM)-grafted cation exchangers exhibited great salt tolerance in protein adsorption and distinct intraparticle mass transfer properties. Finally, the results of dynamic binding capacity (DBC) for lysozyme showed that the poly(SPM)-grafted cation-exchangers had higher binding capacities than did the commercial SP Sepharose FF, and the maximal DBCs reached 192 mg/mL at 50 mmol/L NaCl. These results demonstrate great potential of poly(SPM)-grafted cation-exchangers for the large-scale purification of proteins.
Co-reporter:Shu Li, Yan Sun, Qing-Hong Shi
Biochemical Engineering Journal (15 November 2015) Volume 103() pp:122-129
Publication Date(Web):15 November 2015
DOI:10.1016/j.bej.2015.07.010
•Novel polymer-grafted ion-exchange beads were synthesized by SI-ATRP.•Length and density of the polymer chain in ion-exchange beads were controllable.•The maximal adsorption capacity for γ-globulin reached to 808 mg/g wet beads.•Protein adsorption on the beads achieves equilibrium within 10 min.The static adsorption capacity for proteins is regarded as the benchmark for achieving high binding capacity in protein chromatography. This research provided an efficient and controlled approach for the synthesis of ion-exchange beads with high adsorption capacity via surface-initiated atom transfer radical polymerization (SI-ATRP) by grafting methacryloxyethyltrimethyl ammonium chloride to a micron-sized poly(glycidyl methacrylate) (pGMA) matrix. The result showed that grafting of polymeric ion-exchange groups significantly increased the ionic capacity of the micron-sized beads and the adsorption density for γ-globulin. The adsorption capacity for γ-globulin could be optimized by tuning the chain length and the density of the charged polymer grafted onto the beads. The maximal saturated adsorption capacity for γ-globulin reached 808 mg/g wet beads, which is nine times higher than that of non-grafted ion-exchange beads. In a batch kinetics experiment, γ-globulin achieved adsorption equilibriums rapidly (within 10 min). This finding indicates that the protein was involved in a distinct adsorption mechanism during the protein binding to surface-grafted polymer chains. The results demonstrated that polymer-grafted ion-exchange beads prepared by SI-ATRP possess a high adsorption capacity and rapid kinetics. Thus, these beads are expected to be highly useful as novel chromatographic materials for protein purification.
LYSOZYME