Co-reporter:Haiming Luo, Lisen Lu, Fei Yang, Liang Wang, Xiaoquan Yang, Qingming Luo, and Zhihong Zhang
ACS Nano 2014 Volume 8(Issue 5) pp:4334
Publication Date(Web):April 26, 2014
DOI:10.1021/nn405989n
Current treatment of advanced-stage nasopharyngeal carcinoma (NPC) is not satisfactory. Targeted therapies offer hope for extending survival. Here, we developed simple, robust, and NPC-specific therapeutic lipid nanoparticles based on a fusion peptide, α-NTP, made up of an amphipathic α-helical peptide (α-peptide) linked to an NPC-specific therapeutic peptide (NTP). We found that α-NTP not only retained the sub-30 nm nanostructure-controlling ability of the α-peptide but also displayed the enhanced NPC-targeting ability of the NTP, in which the α-peptide accelerated the uptake of the NTP by NPC cells, with a 4.8-fold increase. Following uptake, α-NTP-based lipid nanoparticles (α-NTP-LNs) exerted coordinated cytotoxicity by inducing cell death via apoptosis and autophagy. In vivo and ex vivo optical imaging data showed that systemically administered α-NTP-LNs efficiently accumulated in the NPC xenograft tumor and displayed high contrast between tumor and normal tissues, which was further confirmed by flow cytometry that there had been a 13-fold uptake difference between tumor cells and hepatocytes. More importantly, the therapeutic efficacy of α-NTP-LNs was specific to NPC xenograft formed with 5-8F cells but not to fibrosarcoma xenograft formed with HT1080 cells in vivo. The growth of 5-8F tumors was significantly inhibited by α-NTP-LNs, with more than 85% inhibition relative to control groups (e.g., α-NTP and PBS treatment). In a lung metastasis model of NPC, survival was significantly improved by α-NTP-LN treatment. In a word, these excellent properties of α-NTP-LNs worked in sync and synergistically, maximizing the therapeutic efficacy of α-NTP-LNs against NPC and its metastasis.Keywords: lipid nanoparticles; nasopharyngeal carcinoma; peptide; targeted therapy
Co-reporter:Qiaoya Lin;Juan Chen;Kenneth K. Ng;Weiguo Cao
Pharmaceutical Research 2014 Volume 31( Issue 6) pp:1438-1449
Publication Date(Web):2014 June
DOI:10.1007/s11095-013-1046-z
Molecular therapeutics often require an effective nanoparticle-based delivery strategy to transport them to cytosolic organelles to be functional. Recently, a cytosolic delivery strategy based on the scavenger receptor class B type I (SR-BI) mediated pathway has shown great potential for the effective delivery of theranostics agents into the cytoplasm of cells without detrimental endosomal entrapment. This study elucidates this unique delivery mechanism for improving cytosolic drug delivery.Multifluorophore-labeled HDL-mimicking peptide phospholipid scaffold (HPPS) nanoparticles were developed. Fluorescence imaging was utilized to examine HPPS transporting payloads into cells step by step through sequential inhibition studies.HPPS specifically recognizes and binds to SR-BI, then interacts with SR-BI, which results in direct transport of payload molecules into the cell cytoplasm without entire particles internalization. The cytosolic transport of payloads occurred through a temperature- and energy-independent pathway, and was also different from actin- and clathrin-mediated endocytosis. Furthermore, this transport was significantly inhibited by disruption of lipid rafts using filipin or methyl-β-cyclodextrin.The cytosolic delivery of payloads by HPPS via SR-BI targeting is predominately mediated through a lipid rafts/caveolae-like pathway. This cytosolic delivery strategy can be utilized for transporting molecular therapeutics that require their action sites to be within cytosolic organelles to enhance therapeutic effect.
Co-reporter:Chuan Huang, Honglin Jin, Yuan Qian, Shuhong Qi, Haiming Luo, Qingming Luo, and Zhihong Zhang
ACS Nano 2013 Volume 7(Issue 7) pp:5791
Publication Date(Web):June 22, 2013
DOI:10.1021/nn400683s
The cytolytic peptide melittin is a potential anticancer candidate that may be able to overcome tumor drug resistance due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, which is especially pronounced following intravenous administration. Here, we designed a hybrid cytolytic peptide, α-melittin, in which the N-terminus of melittin is linked to the C-terminus of an amphipathic α-helical peptide (α-peptide) via a GSG linker. The strong α-helical configuration allows α-melittin to interact with phospholipids and self-assemble into lipid nanoparticles, with a high efficiency for α-melittin encapsulation (>80%) and a strong ability to control the structure of the nanoparticle (∼20 nm). This α-melittin-based lipid nanoparticle (α-melittin-NP) efficiently shields the positive charge of melittin (18.70 ± 0.90 mV) within the phospholipid monolayer, resulting in the generation of a neutral nanoparticle (2.45 ± 0.56 mV) with reduced cytotoxicity and a widened safe dosage range. Confocal imaging data confirmed that α-melittin peptides were efficiently released from the nanoparticles and were cytotoxic to the melanoma cells. Finally, α-melittin-NPs were administered to melanoma-bearing mice via intravenous injection. The growth of the melanoma cells was blocked by the α-melittin-NPs, with an 82.8% inhibition rate relative to the PBS-treated control group. No side effects of treatment were found in this study. Thus, the excellent properties of α-melittin-NP give it potential clinical applications in solid tumor therapeutics through intravenous administration.Keywords: cytolytic peptide; cytotoxicity; melittin; nanoparticles; tumor therapy
Co-reporter:Ting Su, Shaotao Pan, Qingming Luo, Zhihong Zhang
Biosensors and Bioelectronics 2013 Volume 46() pp:97-101
Publication Date(Web):15 August 2013
DOI:10.1016/j.bios.2013.02.024
Fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are powerful tools for dynamically measuring cellular molecular events because they offer high spatial and temporal resolution in living cells. Despite the broad use of FP-based FRET biosensors in cell biology, imaging of multiple molecular events (multi-parameter molecular imaging) in single cells using current FRET pairs remains difficult because it usually requires a control group for additional data calibration. Hence, spectrally compatible FRET pairs that do not require complex image calibration are the key to widespread applications of FP-based FRET biosensors in multi-parameter molecular imaging. Here, we report a new combination of spectrally distinguishable FRET pairs for dual-parameter molecular imaging: mTagBFP/sfGFP (blue and green FP, B/G) and mVenus/mKOκ (yellow and orange FP, Y/O). We demonstrate that additional image correction is not necessary for these dual FRET pairs. Using these dual FRET pairs, we achieve simultaneous imaging of Src and Ca2+ signaling in single living cells stimulated with epithelial growth factor (EGF). By converting traditional FRET biosensors into B/G and Y/O-based biosensors, additional applications are available to elucidate the dynamic relationships of multiple molecular events within a single living cell.Highlights► This paper develops a new combination of fluorescent protein-based pairs for dual FRET imaging. ► These FRET pairs are spectrally compatible without the need of additional image correction. ► Simultaneous imaging of Src kinase activity and Ca2+ signaling is achieved by dual FRET imaging.
Co-reporter:Honglin Jin, Jonathan F. Lovell, Juan Chen, Qiaoya Lin, Lili Ding, Kenneth K. Ng, Rajendra K. Pandey, Muthiah Manoharan, Zhihong Zhang, and Gang Zheng
Bioconjugate Chemistry 2012 Volume 23(Issue 1) pp:33
Publication Date(Web):December 5, 2011
DOI:10.1021/bc200233n
Although small interfering RNA (siRNA) can silence the expression of disease-related genes, delivery of these highly charged molecules is challenging. Delivery approaches for siRNAs are actively being pursued, and improved strategies are required for nontoxic and efficient delivery for gene knockdown. Low density lipoprotein (LDL) is a natural and endogenous nanoparticle that has a rich history as a delivery vehicle. Here, we examine purified LDL nanoparticles as carriers for siRNAs. When siRNA was covalently conjugated to cholesterol, over 25 chol-siRNA could be incorporated onto each LDL without changing nanoparticle morphology. The resulting LDL-chol-siRNA nanoparticles were selectively taken up into cells via LDL receptor mediated endocytosis, resulting in enhanced gene silencing compared to free chol-siRNA (38% gene knock down versus 0% knock down at 100 nM). However, silencing efficiency was limited by the receptor-mediated entrapment of the LDL-chol-siRNA nanoparticles in endolysosomes. Photochemical internalization demonstrated that endolysosome disruption strategies significantly enhance LDL-mediated gene silencing (78% at 100 nM).
Co-reporter:Honglin Jin;Juan Chen;Jonathan F. Lovell;Gang Zheng
Israel Journal of Chemistry 2012 Volume 52( Issue 8-9) pp:715-727
Publication Date(Web):
DOI:10.1002/ijch.201100054
Abstract
The design and synthesis of new light-activated contrast agents for theranostics (therapy/diagnosis) has the potential to facilitate multifunctional and improved personalized medicine. The use of light as a remote activation strategy provides spatial and temporal control of drug effect and nanotechnology can play a key role in this process. Lipoproteins (LDL and HDL), which transport water-insoluble cholesteryl esters and triacylglycerols in nature, have evolved to efficiently ferry exogenous hydrophobic compounds in vivo. They are naturally biocompatible, maneuverable due to their small size (<30 nm), and can be loaded through various methods, and are therefore ideal vehicles to load and transport hydrophobic theranostic agents. This review examines the history and ongoing research activities regarding the design and synthesis of lipoprotein-based formulations, and their applications or potential applications as light-activated theranostic agents, with a main focus on photodynamic therapy. This field, while still in its infancy, will benefit from improved design and modulation of enhanced lipoprotein-based nanocarriers, with the ultimate goal of simultaneous imaging and photoactivation of therapeutic agents in a clinical setting.
Co-reporter:Haiming Luo, Jiyun Shi, Honglin Jin, Di Fan, Lisen Lu, Fan Wang, Zhihong Zhang
Biomaterials 2012 Volume 33(Issue 19) pp:4843-4850
Publication Date(Web):June 2012
DOI:10.1016/j.biomaterials.2012.03.049
Targeting radiopeptides are promising agents for radio-theranostics. However, in vivo evaluation of their targeting specificity is often obscured by their short biologic half-lives and low binding affinities. Here, we report an approach to efficiently examine targeting radiopeptides with a new class of octavalent peptide fluorescent nanoprobe (Octa-FNP) platform, which is composed of candidate targeting peptides and a tetrameric far-red fluorescent protein (tfRFP) scaffold. To shed light on this process, 125I-Octa-FNP, 125I-tfRFP and 125I-peptide were synthesized, and their targeting functionalities were compared. Both fluorescence imaging and radioactive quantification results confirmed that 125I-Octa-FNP had a significantly higher cellular binding capability than 125I-tfRFP. In vivo biodistribution studies show that at 6 h post-injection, 125I-Octa-FNP had 2-fold and 30-fold higher tumor uptake than that of 125I-tfRFP and 125I-peptide, respectively. Moreover, γ-imaging at 24 h post-injection revealed a remarkable accumulation of 125I-Octa-FNP in the tumor while maintaining an extremely low background contrast, which was further confirmed by immunofluorescence analysis. These data suggested that, as an engineered and multivalent platform, Octa-FNP could enhance the tumor targeting of a designed peptide and provide excellent contrast radioimaging, making it a valuable tool for the evaluation of the targeting ability of specifically designed radiopeptides for cancer theranostics.
Co-reporter:Ting Su, Zhihong Zhang, Qingming Luo
Biosensors and Bioelectronics 2012 Volume 31(Issue 1) pp:292-298
Publication Date(Web):15 January 2012
DOI:10.1016/j.bios.2011.10.034
Genetically coded fluorescent protein (FP)-based biosensors are powerful tools for the non-invasive tracking of molecular events in living cells. Although a variety of FP biosensors are available, the simultaneous imaging of multiple biosensors (multi-parameter imaging) in single living cells remains a challenge and is far from routinely used to elucidate the intricate networks of molecular events. In this study, we established a novel combination of FP biosensors for dual-parameter ratiometric imaging, consisting of a new fluorescence resonance energy transfer (FRET) pair mVenus (yellow FP)/mKOκ (orange FP)-based (abbreviated as YO) biosensor and a single FP-based biosensor Grx1-roGFP2. Under our imaging condition, 1.4 ± 0.05% of Grx1-roGFP2 signal contributes to the mVenus channel and 5.2 ± 0.12% of the mVenus signal contributes to the Grx1-roGFP2 channel. We demonstrate that such low degree of cross-talk causes negligible distortion of the ratiometric signal of the YO-based FRET biosensor and Grx1-roGFP2. By using this dual-parameter ratiometric imaging approach, we achieved simultaneous imaging of Src/Ca2+ signaling and glutathione (GSH) redox potential in a single cell, which was previously unattainable. Furthermore, we provided direct evidence that epidermal growth factor (EGF)-induced Src signaling was negatively regulated by H2O2 via its effect on GSH-based redox system, demonstrating the power of this dual-parameter imaging approach for elucidating new connections between different molecular events that occur in a single cell. More importantly, the dual-parameter imaging approach described in this study is highly extendable.Highlights► We established a novel combination of fluorescent protein-based biosensors for dual-parameter ratiometric imaging in single living cells. ► Using this approach, we achieved simultaneous imaging of Src/Ca2+ signaling and GSH redox potential in single living cells, which was previously unattainable. ► Furthermore, we provided evidence that EGF-induced Src signaling was negatively regulated by H2O2 via its effect on GSH-based redox system.
Co-reporter:Honglin Jin;Jonathan F. Lovell;Juan Chen;Kenneth Ng;Weiguo Cao
Cancer Nanotechnology 2010 Volume 1( Issue 1-6) pp:71-78
Publication Date(Web):2010 December
DOI:10.1007/s12645-010-0009-x
Targeted nanoparticles have the potential to deliver a large drug payload specifically to cancer cells. Targeting requires that a ligand on the nanoparticle surface interact with a specific membrane receptor on target cells. However, the contribution of the targeting ligand to nanoparticle delivery is often influenced by non-specific nanoparticle uptake or secondary targeting mechanisms. In this study, we investigate the epidermal growth factor (EGF) receptor-targeting specificity of a nanoparticle by dual-color fluorescent labeling. The targeted nanoparticle was a fluorescently labeled, EGF-conjugated HDL-like peptide–phospholipid scaffold (HPPS) and the cell lines expressed EGF receptor linked with green fluorescent protein (EGFR-GFP). Using LDLA7 cells partially expressing EGFR-GFP, fluorescence imaging demonstrated the co-internalization of EGFR-GFP and EGF-HPPS, thus validating its targeting specificity. Furthermore, specific EGFR-mediated uptake of the EGF-HPPS nanoparticle was confirmed using human non-small cell lung cancer A549 cells. Subsequent confocal microscopy and flow cytometry studies delineated how secondary targeting mechanisms affected the EGFR targeting. Together, this study confirms the EGFR targeting of EGF-HPPS in lung cancer cells and provides insight on the potential influence of unintended targets on the desired ligand–receptor interaction.
Co-reporter:Yuan Qian, Honglin Jin, Sha Qiao, Yanfeng Dai, Chuan Huang, Lisen Lu, Qingming Luo, Zhihong Zhang
Biomaterials (August 2016) Volume 98() pp:171-183
Publication Date(Web):August 2016
DOI:10.1016/j.biomaterials.2016.05.008
Co-reporter:Yuan Qian, Honglin Jin, Sha Qiao, Yanfeng Dai, Chuan Huang, Lisen Lu, Qingming Luo, Zhihong Zhang
Biomaterials (August 2016) Volume 98() pp:171-183
Publication Date(Web):August 2016
DOI:10.1016/j.biomaterials.2016.05.008
The design of peptide-based subunit vaccine formulations for the direct delivery of tumor antigen peptides (Aps) to dendritic cells (DCs) localized within draining lymph nodes (DLNs) is challenging. Mature DCs (mDCs) are abundantly distributed within DLNs but have dramatically reduced endocytic uptake and antigen-processing abilities, so their role as potential vaccine targets has been largely overlooked. Here we report an ultra-small biocompatible nanovaccine (α-Ap-FNP) functionalized by avidly targeting delivery of Ap via the scavenger receptor class B1 (SR-B1) pathway to mDCs. The self-assembly, small size (∼30 nm), SR-B1-targeting and optical properties of α-Ap-FNP resulted in its efficient Ap loading, substantial LN accumulation, targeting of mDCs and enhanced Ap presentation, and fluorescence trafficking, respectively. We also demonstrate that the α-Ap-FNP can be either used alone or encapsulated with CpG oligodeoxynucleotide as a prophylactic and therapeutic vaccine. Thus, the excellent properties of α-Ap-FNP provide it potential for clinical applications as a potent nanovaccine for cancer immunotherapy.