Co-reporter:Tingting Zhou, Yumei Wang, Shifeng Jin, Dandan Li, Xiaofang Lai, Tianping Ying, Han Zhang, Shijie Shen, Wenjun Wang, and Xiaolong Chen
Inorganic Chemistry 2014 Volume 53(Issue 8) pp:4154-4160
Publication Date(Web):April 4, 2014
DOI:10.1021/ic500203k
Two new layered oxyselenides, Ba2MO2Ag2Se2 (M = Co, Mn), have been successfully synthesized via solid-state reaction. It is found that these two compounds, consisting of the infinite MO2 square planes and antifluorite-type Ag2Se2 layers separated by barium, possess new structural features while keeping I4/mmm symmetry. A detailed calculation on the discrete coordination of transition metals by oxygen in the two compounds and Ba2ZnO2Ag2Se2 revealed quite different energy landscapes. The calculated results indicate that the manganese compound favors adoption of the I4/mmm space group, while the cobalt compound could be at the boundary of the transition between the I4/mmm and Cmca phases. In Ba2CoO2Ag2Se2, the coexistence of a large barium ion and a Ag2Se2 layer expands the oxide layer significantly and results in the largest Co–O bond length in the square-planar sheet ever reported. Ba2CoO2Ag2Se2 is near-stoichiometric, whereas Ba2MnO2Ag2Se2 contains 7% silver vacancies, which is explained by the mixed valence of the manganese ion between 2+ and 3+. In Ba2CoO2Ag2Se2, the zero-field-cooled and field-cooled susceptibilities bifurcate at 159 K, located between two antiferromagnetic (AFM) transitions. Meanwhile, Ba2MnO2Ag2Se2 shows high-temperature Curie–Weiss behavior, followed by a low-temperature AFM transition with TN = 32 K. They both exhibit semiconducting behavior with resisitivities of about 105Ω cm at room temperature. The optical band gaps are determined to be 1.49 and 1.18 eV for Ba2CoO2Ag2Se2 and Ba2MnO2Ag2Se2, respectively. Band structure calculations reveal that Ba2CoO2Ag2Se2 is a direct-gap semiconductor, with a calculated band gap of 1.147 eV; however, Ba2MnO2Ag2Se2 failed to reproduce the semiconducting behavior within an A-type AFM model.
Co-reporter:Hongwei Huang ; Lijuan Liu ; Shifeng Jin ; Wenjiao Yao ; Yihe Zhang ;Chuangtian Chen
Journal of the American Chemical Society 2013 Volume 135(Issue 49) pp:18319-18322
Publication Date(Web):November 19, 2013
DOI:10.1021/ja410543w
Deep-UV coherent light generated by nonlinear optical (NLO) materials possesses highly important applications in photonic technologies. Beryllium borates comprising anionic planar layers have been shown to be the most promising deep UV NLO materials. Here, two novel NLO beryllium borates Na2Be4B4O11 and LiNa5Be12B12O33 have been developed through cationic structural engineering. The most closely arranged [Be2BO5]∞ planar layers, connected by the flexible [B2O5] groups, have been found in their structures. This structural regulation strategy successfully resulted in the largest second harmonic generation (SHG) effects in the layered beryllium borates, which is ∼1.3 and 1.4 times that of KDP for Na2Be4B4O11 and LiNa5Be12B12O33, respectively. The deep-UV optical transmittance spectra based on single crystals indicated their short-wavelength cut-offs are down to ∼170 nm. These results demonstrated that Na2Be4B4O11 and LiNa5Be12B12O33 possess very promising application as deep-UV NLO crystals.