Co-reporter:Pengjiao Zhang, Lu Yang, Qiang Li, Songhai Wu, Shaoyi Jia, Zhanyong Li, Zhenkun ZhangLinqi Shi
ACS Applied Materials & Interfaces 2017 Volume 9(Issue 8) pp:
Publication Date(Web):February 9, 2017
DOI:10.1021/acsami.6b16733
Understanding the important role of the surface roughness of nano/colloidal particles and harnessing them for practical applications need novel strategies to control the particles’ surface topology. Although there are many examples of spherical particles with a specific surface roughness, nonspherical ones with similar surface features are rare. The current work reports a one-step, straightforward, and bioinspired surface engineering strategy to prepare ellipsoidal particles with a controlled surface roughness. By manipulating the unique chemistry inherent to the oxidation-induced self-polymerization of dopamine into polydopamine (PDA), PDA coating of polymeric ellipsoids leads to a library of hybrid ellipsoidal particles (PS@PDA) with a surface that decorates with nanoscale PDA protrusions of various densities and sizes. Together with the advantages originated from the anisotropy of ellipsoids and rich chemistry of PDA, such a surface feature endows these particles with some unique properties. Evaporative drying of fluorinated PS@PDA particles produces a homogeneous coating with superhydrophobicity that arises from the two-scale hierarchal structure of microscale interparticle packing and nanoscale roughness of the constituent ellipsoids. Instead of water repelling that occurs for most of the lotus leaf-like superhydrophobic surfaces, such coating exhibits strong water adhesion that is observed with certain species of rose pedals. In addition, the as-prepared hybrid ellipsoids are very efficient in preparing liquid marble-isolated droplets covered with solid particles. Such liquid marbles can be placed onto many surfaces and might be useful for the controllable transport and manipulation of small volumes of liquids.Keywords: ellipsoid; liquid marble; polydopamine; superhydrophobicity; surface roughness;
Co-reporter:Gang Li;Qing-bin Meng;Zhan-yong Li 李湛勇;Ying-li An
Chinese Journal of Polymer Science 2011 Volume 29( Issue 2) pp:267-273
Publication Date(Web):2011 March
DOI:10.1007/s10118-010-1025-3
Monodispersed microspheres with polystyrene as the core and poly(acrylamide-co-N-acryloxysuccinimide) as the shell were synthesized by a two-step surfactant-free emulsion copolymerization. The core-shell morphology of the microspheres was shown by scanning electron microscopy and transmission electron microscopy. Rabbit immunoglobulin G (as antigen) was covalently coupled onto the microspheres by the reaction between succinimide-activated ester groups on the shell of the microspheres and amino groups of the antigen molecules. The size of particles was characterized by dynamic light scattering technique and was found to vary upon bioconjugation and interaction with proteins. The binding process was shown to be specific to goat anti-rabbit immunoglobulin G (as antibody) and reversible upon the addition of free antigen into the system.