Co-reporter:Zhihua Wang, Yaxuan Qian, Xiaolong Wei, Yafang Zhang, Guofan Wu, Xiaoquan Lu
Electrochimica Acta 2017 Volume 250(Volume 250) pp:
Publication Date(Web):1 October 2017
DOI:10.1016/j.electacta.2017.08.076
A novel of eco-friendly molecularly imprinted electrochemical luminescence biosensor was designed, based on nanomaterials, CdSeTe/ZnS core-shell QDs and molecularly imprinted polymer composites modified glass carbon electrode. Combining the superior selectivity of molecularly imprinted polymer and the high sensitivity of electrochemical luminescence would achieve the trace determination of dopamine. And the cavities in molecularly imprinted polymer after eluting were applied as the substrate to capture target molecular dopamine. The electron transform channel for the redox reaction of CdSeTe/ZnS QDs and co-reaction K2S2O8 was blocked with the increase of dopamine concentration, resulting in the cathodic ECL intensity decreased correspondingly. Therefore, the dopamine was detected in the concentration range from 1 × 10−14 mol/L to 2.5 × 10−12 mol/L, with the low detection limit of 3.3 × 10−15 mol/L. The MIP-ECL biosensor showed easy preparation, low lost, lower detection limit, good selectivity and stability, and could be used for the detection of dopamine in the human serum successfully.
Co-reporter:Zhihua Wang;Jinshu Li;Lijuan Xu;Yanjun Feng
Journal of Solid State Electrochemistry 2014 Volume 18( Issue 9) pp:2487-2496
Publication Date(Web):2014 September
DOI:10.1007/s10008-014-2506-z
A sensitive and selective imprinted electrochemical sensor for the determination of aflatoxin B1 (AFB1) was constructed on a glassy carbon electrode by stepwise modification of functional multiwalled carbon nanotubes (MCNTs), Au/Pt bimetallic nanoparticles (Au/PtNPs), and a thin imprinted film. The fabrication of a homogeneous porous poly o-phenylenediamine (POPD)-grafted Au/Pt bimetallic multiwalled carbon nanotubes nanocomposite film was conducted by controllable electrodepositing technology. The sensitivity of the sensor was improved greatly because of the nanocomposite functional layer; the proposed sensor exhibited excellent selectivity toward AFB1 owing to the porous molecular imprinted polymer (MIP) film. The surface morphologies of the modified electrodes were characterized using a scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. A linear relationship between the sensor response signal and the logarithm of AFB1 concentrations ranging from 1 × 10−10 to 1 × 10−5 mol L−1 was obtained with a detection limit of 0.03 nmol L−1. It was applied to detect AFB1 in hogwash oil successfully.